Parallel Computing for Semiquantal Few-Body Systems in Atomic Physics

Author(s):  
Renat A. Sultanov ◽  
Dennis Guster
1977 ◽  
Vol 36 ◽  
pp. 191-215
Author(s):  
G.B. Rybicki

Observations of the shapes and intensities of spectral lines provide a bounty of information about the outer layers of the sun. In order to utilize this information, however, one is faced with a seemingly monumental task. The sun’s chromosphere and corona are extremely complex, and the underlying physical phenomena are far from being understood. Velocity fields, magnetic fields, Inhomogeneous structure, hydromagnetic phenomena – these are some of the complications that must be faced. Other uncertainties involve the atomic physics upon which all of the deductions depend.


2016 ◽  
Author(s):  
Zbigniew J. Czech
Keyword(s):  

1998 ◽  
Vol 49 (7) ◽  
pp. 770-771
Author(s):  
V J Rayward-Smith
Keyword(s):  

2014 ◽  
Vol 46 (11) ◽  
pp. 23-35 ◽  
Author(s):  
Elena A. Velikoivanenko ◽  
Alexey S. Milenin ◽  
Alexander V. Popov ◽  
Vladimir A. Sidoruk ◽  
Alexander N. Khimich

2012 ◽  
Vol 17 (4) ◽  
pp. 207-216 ◽  
Author(s):  
Magdalena Szymczyk ◽  
Piotr Szymczyk

Abstract The MATLAB is a technical computing language used in a variety of fields, such as control systems, image and signal processing, visualization, financial process simulations in an easy-to-use environment. MATLAB offers "toolboxes" which are specialized libraries for variety scientific domains, and a simplified interface to high-performance libraries (LAPACK, BLAS, FFTW too). Now MATLAB is enriched by the possibility of parallel computing with the Parallel Computing ToolboxTM and MATLAB Distributed Computing ServerTM. In this article we present some of the key features of MATLAB parallel applications focused on using GPU processors for image processing.


Sign in / Sign up

Export Citation Format

Share Document