Construction of a Cardiac Motion Atlas from MR Using Non-rigid Registration

Author(s):  
A. Rao ◽  
G. I. Sanchez-Ortiz ◽  
R. Chandrashekara ◽  
M. Lorenzo-Valdés ◽  
R. Mohiaddin ◽  
...  
Author(s):  
A. Rao ◽  
G. I. Sanchez-Ortiz ◽  
R. Chandrashekara ◽  
M. Lorenzo-Valdés ◽  
R. Mohiaddin ◽  
...  

2010 ◽  
Vol 36 (1) ◽  
pp. 179-183
Author(s):  
Xiang-Bo LIN ◽  
Tian-Shuang QIU ◽  
Su RUAN ◽  
NICOLIER Frédéric

Author(s):  
Johannes Mayer ◽  
Thomas-Heinrich Wurster ◽  
Tobias Schaeffter ◽  
Ulf Landmesser ◽  
Andreas Morguet ◽  
...  

Abstract Background Cardiac PET has recently found novel applications in coronary atherosclerosis imaging using [18F]NaF as a radiotracer, highlighting vulnerable plaques. However, the resulting uptakes are relatively small, and cardiac motion and respiration-induced movement of the heart can impair the reconstructed images due to motion blurring and attenuation correction mismatches. This study aimed to apply an MR-based motion compensation framework to [18F]NaF data yielding high-resolution motion-compensated PET and MR images. Methods Free-breathing 3-dimensional Dixon MR data were acquired, retrospectively binned into multiple respiratory and cardiac motion states, and split into fat and water fraction using a model-based reconstruction framework. From the dynamic MR reconstructions, both a non-rigid cardiorespiratory motion model and a motion-resolved attenuation map were generated and applied to the PET data to improve image quality. The approach was tested in 10 patients and focal tracer hotspots were evaluated concerning their target-to-background ratio, contrast-to-background ratio, and their diameter. Results MR-based motion models were successfully applied to compensate for physiological motion in both PET and MR. Target-to-background ratios of identified plaques improved by 7 ± 7%, contrast-to-background ratios by 26 ± 38%, and the plaque diameter decreased by −22 ± 18%. MR-based dynamic attenuation correction strongly reduced attenuation correction artefacts and was not affected by stent-related signal voids in the underlying MR reconstructions. Conclusions The MR-based motion correction framework presented here can improve the target-to-background, contrast-to-background, and width of focal tracer hotspots in the coronary system. The dynamic attenuation correction could effectively mitigate the risk of attenuation correction artefacts in the coronaries at the lung-soft tissue boundary. In combination, this could enable a more reproducible and reliable plaque localisation.


2021 ◽  
Vol 205 ◽  
pp. 106085
Author(s):  
Monire Sheikh Hosseini ◽  
Mahammad Hassan Moradi ◽  
Mahdi Tabassian ◽  
Jan D'hooge

2021 ◽  
Vol 68 ◽  
pp. 102691
Author(s):  
Jinghua Xu ◽  
Mingzhe Tao ◽  
Shuyou Zhang ◽  
Xue Jiang ◽  
Jianrong Tan

Author(s):  
Coert Metz ◽  
Nora Baka ◽  
Hortense Kirisli ◽  
Michiel Schaap ◽  
Theo van Walsum ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 1015-1020 ◽  
Author(s):  
Matthias Schweinoch ◽  
Alexei Sacharow ◽  
Dirk Biermann ◽  
Christoph Buchheim

Springback effects, as occuring in sheet metal forming processes, pose a challenge to manufacturingplanning: the as-built part may deviate from the desired shape rendering it unusable forits intended purpose. A compensation can be achieved by modifying the forming tools to counteractthe shape deviations. A prerequisite to compensation is the knowledge of correspondences (ui; vj),between points ui on the desired and vj on the actual shape. FEM-based simulation software providesmeans to both virtually predict springback and directly obtain correspondences. In case of experimentalprototyping and validation, however, finding correspondences requires solving a registrationproblem: given a test shape Q (scan points of the as-built geometry) and a reference shape R (CADdata of the desired geometry), a transformation S has to be found to fit both objects. Correspondencesbetween S(Q) and R may then be computed based on a metric.If S is restricted to Euclidean transformations, then S(Q) results in a rigid transformation, whereevery point of Q is subject to the same translation and rotation. Local geometric deviations due tospringback are not considered, often resulting in invalid correspondences. In this contribution, a nonrigidregistration method for the efficient analysis of springback is therefore presented. The test shape Q is iteratively partitioned into segments with respect to an error metric. The segments are locally registeredusing rigid registration subject to regulatory conditions. Resulting discontinuities are addressedby minimization of the deformation energy. The error metric uses information about the deviationscomputed based on the correspondences of the previous iteration, e.g. maximum errors or changes ofthe sign. This adaptive per-segment registration allows appropriate correspondences to be determinedeven under local geometric deviations.


Sign in / Sign up

Export Citation Format

Share Document