Construction of Seminumerical Schemes: Application to the Artificial Satellite Problem

Author(s):  
Roberto Barrio
1986 ◽  
Vol 114 ◽  
pp. 5-17
Author(s):  
V. A. Brumberg

Review of the present problems of relativistic celestial mechanics. Advantage is taken of the method suggested earlier by the author and based on using quasi-Galilean coordinates with arbitrary coordinate functions or parameters. As compared with the previous papers the new elements are post-post-Newtonian approximation for the circular motion in the Schwarzschild problem and reduction of the artificial satellite problem including the main solar perturbations to the Schwarzschild problem. Some current questions of time scales definitions, reference frames and reduction of observations are briefly discussed.


2021 ◽  
Vol 133 (10) ◽  
Author(s):  
Martin Lara

AbstractBrouwer’s solution to the artificial satellite problem is revisited. We show that the complete Hamiltonian reduction is rather achieved in the plain Poincaré’s style, through a single canonical transformation, than using a sequence of partial reductions based on von Zeipel’s alternative for dealing with perturbed degenerate Hamiltonian systems. Beyond the theoretical interest of the new approach as regards the complete reduction of perturbed Keplerian motion, we also show that a solution based on a single set of corrections may yield computational benefits in the implementation of an analytic orbit propagator.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1966 ◽  
Vol 25 ◽  
pp. 363-371
Author(s):  
P. Sconzo

In this paper an orbit computation program for artificial satellites is presented. This program is operational and it has already been used to compute the orbits of several satellites.After an introductory discussion on the subject of artificial satellite orbit computations, the features of this program are thoroughly explained. In order to achieve the representation of the orbital elements over short intervals of time a drag-free perturbation theory coupled with a differential correction procedure is used, while the long range behavior is obtained empirically. The empirical treatment of the non-gravitational effects upon the satellite motion seems to be very satisfactory. Numerical analysis procedures supporting this treatment and experience gained in using our program are also objects of discussion.


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


Sign in / Sign up

Export Citation Format

Share Document