On the Discretization of Interface Problems with Perfect and Imperfect Contact

Author(s):  
Tatiana Chernogorova ◽  
Richard E. Ewing ◽  
Oleg Iliev ◽  
Raytcho Lazarov
2017 ◽  
Vol 9 (5) ◽  
pp. 1189-1205 ◽  
Author(s):  
Liqun Wang ◽  
Songming Hou ◽  
Liwei Shi

AbstractWe propose a non-traditional finite element method with non-body-fitting grids to solve the matrix coefficient elliptic equations with imperfect contact in two dimensions, which has not been well-studied in the literature. Numerical experiments demonstrated the effectiveness of our method.


2021 ◽  
pp. 174425912198938
Author(s):  
Michael Gutland ◽  
Scott Bucking ◽  
Mario Santana Quintero

Hygrothermal models are important tools for assessing the risk of moisture-related decay mechanisms which can compromise structural integrity, loss of architectural features and material. There are several sources of uncertainty when modelling masonry, related to material properties, boundary conditions, quality of construction and two-dimensional interactions between mortar and unit. This paper examines the uncertainty at the mortar-unit interface with imperfections such as hairline cracks or imperfect contact conditions. These imperfections will alter the rate of liquid transport into and out of the wall and impede the liquid transport between mortar and masonry unit. This means that the effective liquid transport of the wall system will be different then if only properties of the bulk material were modelled. A detailed methodology for modelling this interface as a fracture is presented including definition of material properties for the fracture. The modelling methodology considers the combined effect of both the interface resistance across the mortar-unit interface and increase liquid transport in parallel to the interface, and is generalisable to various combinations of materials, geometries and fracture apertures. Two-dimensional DELPHIN models of a clay brick/cement-mortar masonry wall were created to simulate this interaction. The models were exposed to different boundary conditions to simulate wetting, drying and natural cyclic weather conditions. The results of these simulations were compared to a baseline model where the fracture model was not included. The presence of fractures increased the rate of absorption in the wetting phase and an increased rate of desorption in the drying phase. Under cyclic conditions, the result was higher peak moisture contents after rain events compared to baseline and lower moisture contents after long periods of drying. This demonstrated that detailed modelling of imperfections at the mortar-unit interface can have a definitive influence on results and conclusions from hygrothermal simulations.


2011 ◽  
Vol 22 (07) ◽  
pp. 687-710 ◽  
Author(s):  
THEODOROS P. HORIKIS

A numerical technique is described that can efficiently compute solutions of interface problems. These are problems with data, such as the coefficients of differential equations, discontinuous or even singular across one or more interfaces. A prime example of these problems are optical waveguides, and as such the scheme is applied to Maxwell's equations as they are formulated to describe light confinement in Bragg fibers. It is based on standard finite differences appropriately modified to take into account all possible discontinuities across the waveguide's interfaces due to the change of the refractive index. Second- and fourth-order schemes are described with additional adaptations to handle matrix eigenvalue problems, demanding geometries and defects.


Sign in / Sign up

Export Citation Format

Share Document