boundary integral formulation
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 7)

H-INDEX

30
(FIVE YEARS 0)

2021 ◽  
Vol 263 (4) ◽  
pp. 2674-2686
Author(s):  
Umberto Iemma ◽  
Caterina Poggi ◽  
Monica Rossetti ◽  
Giovanni Bernardini

The fast development of Urban-Air-Mobility as well as the constant growth of the air transport have made the acoustic pollution abatement a crucial requirement for the aviation industries in order to comply with the increasingly demanding constraints for the community acceptance. The aeroacoustic characterization of arrays of electrically-powered propellers is one of the most challenging issues. The vast majority of the UAM concepts under development adopt propulsion systems based on multiple propellers, for which reliable and cost-efficient aeroacoustic models are still lacking. The present paper proposes the development of surrogate models for the description of acoustic emission of multi-propeller configurations. The numerical investigation focuses on surrogate models able to take into account the effects of the propeller blade geometry (e.g., chord and twist distributions) and global propeller-array geometric parameters (e.g., propellers clearance) on acoustic performances of the whole system. An innovative Artificial Neural Network adaptive metamodelling technique is applied on a numerical database obtained through a boundary integral formulation for the solution of incompressible potential flows around lifting/thrusting bodies, followed by the application of the Farassat 1A boundary integral formulation for the noise field evaluation.


Author(s):  
ELENA CHERKAEV ◽  
MINWOO KIM ◽  
MIKYOUNG LIM

The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.


2020 ◽  
Vol 41 (12) ◽  
pp. 1897-1914
Author(s):  
Linchong Chen ◽  
Xiaolin Li

AbstractThe Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method (CVBEFM) for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative, a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures. To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables, a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure. The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such as κ = 10 000.


2020 ◽  
Vol 10 (8) ◽  
pp. 2643
Author(s):  
Giovanni Bernardini ◽  
Francesco Centracchio ◽  
Massimo Gennaretti ◽  
Umberto Iemma ◽  
Claudio Pasquali ◽  
...  

This paper presents an investigation of the aerodynamic and aeroacoustic interaction of propellers for distributed electric propulsion applications. The rationale underlying the research is related to the key role that aeroacoustics plays in the establishment of the future commercial aviation scenario. The sustainable development of airborne transportation system is currently constrained by community noise, which limits the operations of existing airports and prevents the building of new ones. In addition, the substantial saturation of the existing noise abatement technologies inhibits the further development of the existing fleet, and imposes the adoption of disruptive configurations in terms of airframe layout and propulsion technology. Simulation-based data may help in clarifying many aspects related to the acoustic impact of such innovative concepts. Blended-wing-body equipped with distributed electric propulsion is one of the most promising, due to the beneficial effect of the substantial shielding induced by its geometry. Nevertheless, the novelty of the layout requires a thorough investigation of specific aspect for which no previous experience is available. Herein, the interaction between propellers is analysed for a fixed propeller geometry, as a function of their mutual distance and compared to the acoustic pattern of the isolated one. The aerodynamic results have been obtained using a boundary integral formulation for unsteady, incompressible, potential flows which accounts for the interaction between free wakes and propellers. For the aeroacoustic analyses, the Farassat 1A boundary integral formulation for the solution of the Ffowcs Williams and Hawkings equation has been used. These results provide an insight into the minimum distance between propellers to avoid aerodynamic/aeroacoustic interaction effects, which is an important starting point for the development of distributed propulsion systems.


Sign in / Sign up

Export Citation Format

Share Document