scholarly journals Do Your Hard-Spheres Have Tails? A Molecular Dynamics Integration Algorithm for Systems with Mixed Hard-Core/Continuous Potentials

Author(s):  
Brian B. Laird
2018 ◽  
Vol 4 (6) ◽  
Author(s):  
Thibaud Maimbourg ◽  
Mauro Sellitto ◽  
Guilhem Semerjian ◽  
Francesco Zamponi

Packing spheres efficiently in large dimension dd is a particularly difficult optimization problem. In this paper we add an isotropic interaction potential to the pure hard-core repulsion, and show that one can tune it in order to maximize a lower bound on the packing density. Our results suggest that exponentially many (in the number of particles) distinct disordered sphere packings can be efficiently constructed by this method, up to a packing fraction close to 7 \, d \, 2^{-d}7d2−d. The latter is determined by solving the inverse problem of maximizing the dynamical glass transition over the space of the interaction potentials. Our method crucially exploits a recent exact formulation of the thermodynamics and the dynamics of simple liquids in infinite dimension.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Volkan Ramazan Akkaya ◽  
Ilyas Kandemir

Classical solution of Navier-Stokes equations with nonslip boundary condition leads to inaccurate predictions of flow characteristics of rarefied gases confined in micro/nanochannels. Therefore, molecular interaction based simulations are often used to properly express velocity and temperature slips at high Knudsen numbers (Kn) seen at dilute gases or narrow channels. In this study, an event-driven molecular dynamics (EDMD) simulation is proposed to estimate properties of hard-sphere gas flows. Considering molecules as hard-spheres, trajectories of the molecules, collision partners, corresponding interaction times, and postcollision velocities are computed deterministically using discrete interaction potentials. On the other hand, boundary interactions are handled stochastically. Added to that, in order to create a pressure gradient along the channel, an implicit treatment for flow boundaries is adapted for EDMD simulations. Shear-Driven (Couette) and Pressure-Driven flows for various channel configurations are simulated to demonstrate the validity of suggested treatment. Results agree well with DSMC method and solution of linearized Boltzmann equation. At low Kn, EDMD produces similar velocity profiles with Navier-Stokes (N-S) equations and slip boundary conditions, but as Kn increases, N-S slip models overestimate slip velocities.


1988 ◽  
Vol 88 (7) ◽  
pp. 4448-4450 ◽  
Author(s):  
Y. P. Carignan ◽  
T. Vladimiroff ◽  
A. K. Macpherson

Sign in / Sign up

Export Citation Format

Share Document