non equilibrium molecular dynamics
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 101)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Md. Sherajul Islam ◽  
Imon Mia ◽  
A. S. M. Jannatul Islam ◽  
Catherine Stampfl ◽  
Jeongwon Park

AbstractGraphene based two-dimensional (2D) van der Waals (vdW) materials have attracted enormous attention because of their extraordinary physical properties. In this study, we explore the temperature and interlayer coupling induced thermal transport across the graphene/2D-SiC vdW interface using non-equilibrium molecular dynamics and transient pump probe methods. We find that the in-plane thermal conductivity κ deviates slightly from the 1/T law at high temperatures. A tunable κ is found with the variation of the interlayer coupling strength χ. The interlayer thermal resistance R across graphene/2D-SiC interface reaches 2.71 $$\times$$ × 10–7$${\text{Km}}^{2} /{\text{W}}$$ Km 2 / W at room temperature and χ = 1, and it reduces steadily with the elevation of system temperature and χ, demonstrating around 41% and 56% reduction with increasing temperature to 700 K and a χ of 25, respectively. We also elucidate the heat transport mechanism by estimating the in-plane and out-of-plane phonon modes. Higher phonon propagation possibility and Umklapp scattering across the interface at high temperatures and increased χ lead to the significant reduction of R. This work unveils the mechanism of heat transfer and interface thermal conductance engineering across the graphene/2D-SiC vdW heterostructure.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Yu ◽  
Yongjing Wu ◽  
Xiangxiang Shao ◽  
Xiwen Wang

The thermal conductivity (TC) of graphene with Sierpinski carpet fractal (SCF) and regular carpet (RC) defects is numerically studied by the non-equilibrium molecular dynamics (NEMD) method. The influences of porosity, fractal levels, and types of defects on the TC of graphene are clarified, and the underlying mechanisms of phonon behaviors are uncovered. The numerical results indicate that the defects in graphene induce the atoms that have the heat transfer blockage effect, and thus, the TC of defective graphene decreases with increasing porosity. With the increase in fractal levels, more atoms have the heat transfer blockage effect, which induces the TC of graphene with SCF defects to sharply decrease. Moreover, compared with the graphene with RC defects, more atoms participate in the heat transfer blockage under the graphene with SCF defects, which leads to the lower TC of graphene with SCF defects.


2021 ◽  
Author(s):  
Song Hu ◽  
C. Y. Zhao ◽  
Xiaokun Gu

Abstract The knowledge of interfacial thermal conductance (ITC) is key to understand thermal transport in nanostructures. The non-equilibrium molecular dynamics (NEMD) simulation is a useful tool to calculate the ITC. In this study, we investigate the impact of thermostat on the prediction of the ITC. The Langevin thermostat is found to result in larger ITC than the Nose-Hoover thermostat. In addition, the results from NEMD simulations with the Nose-Hoover thermostat exhibit strong size effect of thermal reservoirs. Detailed spectral heat flux decomposition and modal temperature calculation reveal that the acoustic phonons in hot and cold thermal reservoirs are of smaller temperature difference than optical phonons when using the Nose-Hoover thermostat, but in the Langevin thermostat phonons are of identical temperatures. Such a non-equilibrium state of phonons in the case of the Nose-Hoover thermostat reduces the heat flux of low-to-middle-frequency phonons. We also discuss how enlarging the reservoirs or adding an epitaxial rough wall to the reservoirs affect the predicted ITC, and find these attempts could help to thermalize the phonons, but still underestimate the heat flux from low-frequency phonons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryota Jono ◽  
Syogo Tejima ◽  
Jun-ichi Fujita

AbstractWe studied the shear-thickening behavior of systems containing rigid spherical bodies immersed in smaller particles using non-equilibrium molecular dynamics simulations. We generated shear-thickening states through particle mass modulation of the systems. From the microstructures, i.e., two-dimensional pair distribution functions, we found anisotropic structures resulting from shear thickening, that are explained by the difference between the velocities of rigid bodies and fluid particles. The increasing viscosity in our system originated from collisions between fluid particles and rigid bodies. The lubrication forces defined in macroscale physics are then briefly discussed.


Author(s):  
Maryam Mahnama ◽  
Mostafa Meshkinghalam ◽  
Masoumeh Ozmaian

Abstract Single-layer black phosphorus (SLBP) also known as phosphorene is a recently introduced two-dimensional material with unique structure and promising physical properties that has drawn considerable attention in the field of nanodevices. This structure demonstrates a high anisotropy in mechanical and thermal behavior along zigzag (ZZ) and armchair (AC) principal in-plane directions. Here in this study, it is shown that implementing shear strain on 10nm×50nm SLBP nanoribbons (SLBPNRs) along ZZ and AC directions, the anisotropy leads to different corrugated patterns on the pristine structure. Applying non-equilibrium molecular dynamics under a parameterized Stillinger-Weber potential for modelling SLBP, thermal conductivity (TC) behavior of the sheared SLBPNRs with corrugated patterns are examined. The results show a higher amplitude and wavelength of the corregations on the ZZ-alighned SLBPNRs, which is around two times higher than that of AC-alighned counterparts. Although, it is also shown that unlike some other 2D materials, such as graphene, the wrinkling does not have such a significant effect on TC of SLBP. The phonon density of states results obtained in this work as well as phonon dispersion curves by first-principle calculations in other works concrete this finding. The results show small frequency shifts in both high- and low-frequency phonons, which are not strong enough to affect TC in SLBPNRs. This interesting thermal propertiy of SLBP under shear strain suggests the great potential application of these corrugated structures in nanodevices without any loss of TC abilities.


2021 ◽  
Author(s):  
Lijie He ◽  
Danae Polsin ◽  
Shuai Zhang ◽  
Gilbert W. Collins ◽  
Niaz Abdolrahim

Abstract Identifying structure phase transformation path is essential but challenging in plastic deformation under high-pressure high-strain rate experiments. In this paper, we adopt a framework based on non-equilibrium molecular dynamics and virtual diffraction to reproduce the phase transformation event observed in laser-driven ramp compression. Our simulation results reveal the detailed phase transformation pathway with atomic-level deformation physics while the simulated stress-density response and virtual diffraction patterns match the experimental observation with great accuracy.


2021 ◽  
Author(s):  
Aamir Shahzad ◽  
Madiha Naheed ◽  
Aadil Mahboob ◽  
Muhammad Kashif ◽  
Alina Manzoor ◽  
...  

The computation of thermalt properties of dusty plasmas is substantial task in the area of science and technology. The thermal conductivity (λ) has been computed by applying polarization effect through molecular dynamics (MD) simulations of two dimensional (2D) strongly coupled complex dusty plasmas (SCCDPs). The effects of polarization on thermal conductivity have been measured for a wide range of Coulomb coupling (Γ) and Debye screening (κ) parameters using homogeneous non-equilibrium molecular dynamics (HNEMD) method for suitable system sizes. The HNEMD simulation method is employed at constant external force field strength (F*) and varying polarization effects. The algorithm provides precise results with rapid convergence and minute dimension effects. The outcomes have been compared with earlier available simulation results of molecular dynamics, theoretical predictions and experimental results of complex dusty plasma liquids. The calculations show that the kinetic energy of SCCDPS depends upon the system temperature (≡ 1/Г) and it is independent of higher screening parameter. Furthermore, it has shown that the presented HNEMD method has more reliable results than those obtained through earlier known numerical methods.


2021 ◽  
Author(s):  
Mingxuan Jiang ◽  
Juan D. Olarte-Plata ◽  
Fernando Bresme

The Interfacial Thermal Conductance (ITC) is a fundamental property of materials and has particular relevance at the nanoscale. The ITC quantifies the thermal resistance between materials of different compositions or between fluids in contact with materials. Furthermore, the ITC determines the rate of cooling/heating of the materials and the temperature drop across the interface. Here we propose a method to compute local ITCs and temperature drops of nanoparticle-fluid interfaces. Our approach resolves the ITC at the atomic level using the atomic coordinates of the nanomaterial as nodes to compute local thermal transport properties. We obtain high-resolution descriptions of the interfacial thermal transport by combining the atomistic nodal approach, computational geometry techniques and "computational farming'' using Non-Equilibrium Molecular Dynamics simulations. We illustrate our method by analyzing various nanoparticles as a function of their size and geometry, targeting experimentally relevant structures like capped octagonal rods, cuboctahedrons, decahedrons, rhombic dodecahedrons, cubes, icosahedrons, truncated octahedrons, octahedrons and spheres. We show that the ITC of these very different geometries can be accurately described in terms of the local coordination number of the atoms in the nanoparticle surface. Nanoparticle geometries with lower surface coordination numbers feature higher ITCs, and the ITC generally increases with decreasing particle size.


Sign in / Sign up

Export Citation Format

Share Document