simple quantum
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 38)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 4 ◽  
Author(s):  
David Orrell ◽  
Monireh Houshmand

This paper describes an approach to economics that is inspired by quantum computing, and is motivated by the need to develop a consistent quantum mathematical framework for economics. The traditional neoclassical approach assumes that rational utility-optimisers drive market prices to a stable equilibrium, subject to external perturbations or market failures. While this approach has been highly influential, it has come under increasing criticism following the financial crisis of 2007/8. The quantum approach, in contrast, is inherently probabilistic and dynamic. Decision-makers are described, not by a utility function, but by a propensity function which specifies the probability of transacting. We show how a number of cognitive phenomena such as preference reversal and the disjunction effect can be modelled by using a simple quantum circuit to generate an appropriate propensity function. Conversely, a general propensity function can be quantized, via an entropic force, to incorporate effects such as interference and entanglement that characterise human decision-making. Applications to some common problems and topics in economics and finance, including the use of quantum artificial intelligence, are discussed.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Roberto Casadio

AbstractWe present a simple quantum description of the gravitational collapse of a ball of dust which excludes those states whose width is arbitrarily smaller than the gravitational radius of the matter source and supports the conclusion that black holes are macroscopic extended objects. We also comment briefly on the relevance of this result for the ultraviolet self-completion of gravity and the connection with the corpuscular picture of black holes.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Pasquale Bosso

Several approaches to quantum gravity imply the presence of a minimal measurable length at high energies. This is in tension with the Heisenberg Uncertainty Principle. Such a contrast is then considered in phenomenological approaches to quantum gravity by introducing a minimal length in quantum mechanics via the Generalized Uncertainty Principle. Several features of the standard theory are affected by such a modification. For example, position eigenstates are no longer included in models of quantum mechanics with a minimal length. Furthermore, while the momentum-space description can still be realized in a relatively straightforward way, the (quasi-)position representation acquires numerous issues. Here, we will review such issues, clarifying aspects regarding models with a minimal length. Finally, we will consider the effects of such models on simple quantum mechanical systems.


2021 ◽  
Vol 921 (2) ◽  
pp. L41
Author(s):  
Manasvi Lingam ◽  
Amedeo Balbi ◽  
Swadesh M. Mahajan

Abstract Photosynthesis is a plausible pathway for the sustenance of a substantial biosphere on an exoplanet. In fact, it is also anticipated to create distinctive biosignatures detectable by next-generation telescopes. In this work, we explore the excitation features of photopigments that harvest electromagnetic radiation by constructing a simple quantum-mechanical model. Our analysis suggests that the primary Earth-based photopigments for photosynthesis may not function efficiently at wavelengths >1.1 μm. In the context of (hypothetical) extrasolar photopigments, we calculate the potential number of conjugated π-electrons (N ⋆) in the relevant molecules, which can participate in the absorption of photons. By hypothesizing that the absorption maxima of photopigments are close to the peak spectral photon flux of the host star, we utilize the model to estimate N ⋆. As per our formalism, N ⋆ is modulated by the stellar temperature, and is conceivably higher (lower) for planets orbiting stars cooler (hotter) than the Sun; exoplanets around late-type M-dwarfs might require an N ⋆ twice that of the Earth. We conclude the analysis with a brief exposition of how our model could be empirically tested by future observations.


Author(s):  
Haodong Bian ◽  
Jianqiang Huang ◽  
Jiahao Tang ◽  
Runting Dong ◽  
Li Wu ◽  
...  

2021 ◽  
Vol 34 (3) ◽  
pp. 410-413
Author(s):  
Carlos López

The action reaction principle (ARP), a fundamental ingredient of Physics, is taken for granted, because it is automatically fulfilled along the ordinary Hamiltonian, classical or quantum, time evolution law. But in quantum mechanics, there is an extraordinary evolution law, the projection of state rule along quantum measurements, which is not Hamiltonian. Consequently, the ARP is not automatically fulfilled along quantum measurements, and it must be checked case by case. Surprisingly, very simple quantum measurements, both theoretical processes and experiments, show an apparent violation of the ARP, so that the hidden reaction must be found. In the analyzed experiment, the ARP is restored if some new system, the quantum or de Broglie wave, exists and locally interacts with the detector. There cannot be interaction at a spatial distance between the particle (photon or electron) and the obstacle‐detector.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 530
Author(s):  
Marius Krumm ◽  
Philipp A. Höhn ◽  
Markus P. Müller

In a quantum world, reference frames are ultimately quantum systems too – but what does it mean to "jump into the perspective of a quantum particle"? In this work, we show that quantum reference frame (QRF) transformations appear naturally as symmetries of simple physical systems. This allows us to rederive and generalize known QRF transformations within an alternative, operationally transparent framework, and to shed new light on their structure and interpretation. We give an explicit description of the observables that are measurable by agents constrained by such quantum symmetries, and apply our results to a puzzle known as the `paradox of the third particle'. We argue that it can be reduced to the question of how to relationally embed fewer into more particles, and give a thorough physical and algebraic analysis of this question. This leads us to a generalization of the partial trace (`relational trace') which arguably resolves the paradox, and it uncovers important structures of constraint quantization within a simple quantum information setting, such as relational observables which are key in this resolution. While we restrict our attention to finite Abelian groups for transparency and mathematical rigor, the intuitive physical appeal of our results makes us expect that they remain valid in more general situations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ryan S. Bennink

AbstractI present a method for estimating the fidelity F(μ, τ) between a preparable quantum state μ and a classically specified pure target state $$\tau =\left|\tau \right\rangle \left\langle \tau \right|$$ τ = τ τ , using simple quantum circuits and on-the-fly classical calculation (or lookup) of selected amplitudes of $$\left|\tau \right\rangle$$ τ . The method is sample efficient for anticoncentrated states (including many states that are hard to simulate classically), with approximate cost 4ϵ−2(1 − F)dpcoll where ϵ is the desired precision of the estimate, d is the dimension of the Hilbert space, and pcoll is the collision probability of the target distribution. This scaling is exponentially better than that of any method based on classical sampling. I also present a more sophisticated version of the method that uses any efficiently preparable and well-characterized quantum state as an importance sampler to further reduce the number of copies of μ needed. Though some challenges remain, this work takes a significant step toward scalable verification of complex states produced by quantum processors.


Author(s):  
Jan H. Kwapisz ◽  
Leszek Z. Stolarczyk

AbstractThe equilibrium carbon-carbon (C-C) bond lengths in π-electron hydrocarbons are very sensitive to the electronic ground-state characteristic. In the recent two papers by Stolarczyk and Krygowski (J Phys Org Chem, 34:e4154,e4153, 2021) a simple quantum approach, the Augmented Hückel Molecular Orbital (AugHMO) model, is proposed for the qualitative, as well as quantitative, study of this phenomenon. The simplest realization of the AugHMO model is the Hückel-Su-Schrieffer-Heeger (HSSH) method, in which the resonance integral β of the HMO model is a linear function the bond length. In the present paper, the HSSH method is applied in a study of C-C bond lengths in a set of 34 selected polycyclic aromatic hydrocarbons (PAHs). This is exactly the set of molecules analyzed by Riegel and Müllen (J Phys Org Chem, 23:315, 2010) in the context of their electronic-excitation spectra. These PAHs have been obtained by chemical synthesis, but in most cases no diffraction data (by X-rays or neutrons) of sufficient quality is available to provide us with their geometry. On the other hand, these PAHs are rather big (up to 96 carbon atoms), and ab initio methods of quantum chemistry are too expensive for a reliable geometry optimization. That makes the HSSH method a very attractive alternative. Our HSSH calculations uncover a modular architecture of certain classes of PAHs. For the studied molecules (and their fragments – modules), we calculate the values of the aromaticity index HOMA.


Sign in / Sign up

Export Citation Format

Share Document