Performance issues in high performance transaction processing architectures

Author(s):  
Anupam Bhide ◽  
Michael Stonebraker
2021 ◽  
Vol 14 (10) ◽  
pp. 1872-1885
Author(s):  
Baoyue Yan ◽  
Xuntao Cheng ◽  
Bo Jiang ◽  
Shibin Chen ◽  
Canfang Shang ◽  
...  

The recent byte-addressable and large-capacity commercialized persistent memory (PM) is promising to drive database as a service (DBaaS) into unchartered territories. This paper investigates how to leverage PMs to revisit the conventional LSM-tree based OLTP storage engines designed for DRAM-SSD hierarchy for DBaaS instances. Specifically we (1) propose a light-weight PM allocator named Hal-loc customized for LSM-tree, (2) build a high-performance Semi-persistent Memtable utilizing the persistent in-memory writes of PM, (3) design a concurrent commit algorithm named Reorder Ring to aschieve log-free transaction processing for OLTP workloads and (4) present a Global Index as the new globally sorted persistent level with non-blocking in-memory compaction. The design of Reorder Ring and Semi-persistent Memtable achieves fast writes without synchronized logging overheads and achieves near instant recovery time. Moreover, the design of Semi-persistent Memtable and Global Index with in-memory compaction enables the byte-addressable persistent levels in PM, which significantly reduces the read and write amplification as well as the background compaction overheads. The overall evaluation shows that the performance of our proposal over PM-SSD hierarchy outperforms the baseline by up to 3.8x in YCSB benchmark and by 2x in TPC-C benchmark.


Author(s):  
Maksim Gorev ◽  
Raimund Ubar ◽  
Peeter Ellervee ◽  
Sergei Devadze ◽  
Jaan Raik ◽  
...  

VLSI Design ◽  
2001 ◽  
Vol 12 (1) ◽  
pp. 1-12
Author(s):  
Jun Dong Cho ◽  
Jin Youn Cho

Placement of multiple dies on an MCM or high-performance VLSI substrate is a nontrivial task in which multiple criteria need to be considered simultaneously to obtain a true multi-objective optimization. Unfortunately, the exact physical attributes of a design are not known in the placement step until the entire design process is carried out. When the performance issues are considered, crosstalk noise constraints in the form of net separation and via constraint become important. In this paper, for better performance and wirability estimation during placement for MCMs, several performance constraints are taken into account simultaneously. A graph-based wirability estimation along with the Genetic placement optimization technique is proposed to minimize crosstalk, crossings, wirelength and the number of layers. Our work is significant since it is the first attempt at bringing the crosstalk and other performance issues into the placement domain.


Sign in / Sign up

Export Citation Format

Share Document