VLSI Design
Latest Publications


TOTAL DOCUMENTS

865
(FIVE YEARS 0)

H-INDEX

24
(FIVE YEARS 0)

Published By Hindawi Limited

1563-5171, 1065-514x

VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohamed Chentouf ◽  
Zine El Abidine Alaoui Ismaili

Nowadays, many new low power ASICs applications have emerged. This new market trend made the designer’s task of meeting the timing and routability requirements within the power budget more challenging. One of the major sources of power consumption in modern integrated circuits (ICs) is the Interconnect. In this paper, we present a novel Power and Timing-Driven global Placement (PTDP) algorithm. Its principle is to wrap a commercial timing-driven placer with a nets weighting mechanism to calculate the nets weights based on their timing and power consumption. The new calculated weight is used to drive the placement engine to place the cells connected by the critical power or timing nets close to each other and hence reduce the parasitic capacitances of the interconnects and, by consequence, improve the timing and power consumption of the design. This approach not only improves the design power consumption but facilitates also the routability with only a minor impact on the timing closure of a few designs. The experiments carried on 40 industrial designs of different nodes, sizes, and complexities and demonstrate that the proposed algorithm is able to achieve significant improvements on Quality of Results (QoR) compared with a commercial timing driven placement flow. We effectively reduce the interconnect power by an average of 11.5% that leads to a total power improvement of 5.4%, a timing improvement of 9.4%, 13.7%, and of 3.2% in Worst Negative Slack (WNS), Total Negative Slack (TNS), and total wirelength reduction, respectively.


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Latika Desai ◽  
Suresh Mali

Due to demand of information transfer through higher speed wireless communication network, it is time to think about security of important information to be transferred. Further, as these communication networks are part of open channel, to preserve the security of any Critical Information (CI) is really a challenging task in any real-time application. Data hiding techniques give more security and robustness of important CI against encryption or cryptographic software solutions. However, hardwired approach exhibits better solution not only in terms of reduction of complexity but also in terms of adaptive real-time output. This paper demonstrates frequency, Discrete Cosine Transform (DCT) domain Steganographic data hiding hardware solution for secret communication called Crypto-Stego-Real-Time (CSRT) System. The challenge is to design a secure algorithm keeping reliability of minimum distortion of original cover signal while embedding considerable amount of CI. Field Programmable Gate Array (FPGA) implementation shown in this paper is more secure, robust, and fast. Pipelining process while embedding enhances the speed of embedding, optimizes the memory utilization, and gives better Peak Signal to Noise Ratio (PSNR) and high robustness. Practically implemented hardware Steganographic solutions shown in this paper also give better performance than that of the current state-of-the-art hardware implementations.


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Ioannis Intzes ◽  
Hongying Meng ◽  
John P. Cosmas

Wireless capsule endoscopy (WCE) is a painless diagnostic tool used by the physicians for endoscopic examination of the gastrointestinal track. The performance of the existing WCE systems is limited by high power consumption and low data rate transmission. In this paper, a 144 MHz FinFET On-Off Keying (OOK) transmitter is designed and integrated with a class-E power amplifier. It is implemented and simulated using 16 nm FinFET Predictive Technology Models. The proposed transmitter can achieve the data rate of 33 Mbps with average power consumption of 1.04 mW from a 0.85 V power supply in the simulation. This design outperforms the current state-of-the-art designs.


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chuandong Chen ◽  
Rongshan Wei ◽  
Shaohao Wang ◽  
Wei Hu

Timing optimization for logic circuits is one of the key steps in logic synthesis. Extant research data are mainly proposed based on various intelligence algorithms. Hence, they are neither comparable with timing optimization data collected by the mainstream electronic design automation (EDA) tool nor able to verify the superiority of intelligence algorithms to the EDA tool in terms of optimization ability. To address these shortcomings, a novel verification method is proposed in this study. First, a discrete particle swarm optimization (DPSO) algorithm was applied to optimize the timing of the mixed polarity Reed-Muller (MPRM) logic circuit. Second, the Design Compiler (DC) algorithm was used to optimize the timing of the same MPRM logic circuit through special settings and constraints. Finally, the timing optimization results of the two algorithms were compared based on MCNC benchmark circuits. The timing optimization results obtained using DPSO are compared with those obtained from DC, and DPSO demonstrates an average reduction of 9.7% in the timing delays of critical paths for a number of MCNC benchmark circuits. The proposed verification method directly ascertains whether the intelligence algorithm has a better timing optimization ability than DC.


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
S. K. Tripathi ◽  
Mohd. Samar Ansari ◽  
Amit M. Joshi

The physical constraints of ever-shrinking CMOS transistors are rapidly approaching atomistic and quantum mechanical limits. Therefore, research is now directed towards the development of nanoscale devices that could work efficiently in the sub-10 nm regime. This coupled with the fact that recent design trend for analog signal processing applications is moving towards current-mode circuits which offer lower voltage swings, higher bandwidth, and better signal linearity is the motivation for this work. A digitally controlled DVCC has been realized using CNFETs. This work exploited the CNFET’s parameters like chirality, pitch, and numbers of CNTs to perform the digital control operation. The circuit has minimum number of transistors and can control the output current digitally. A similar CMOS circuit with 32 nm CMOS parameters was also simulated and compared. The result shows that CMOS-based circuit requires 418.6 μW while CNFET-based circuit consumes 352.1 μW only. Further, the proposed circuit is used to realize a CNFET-based instrumentation amplifier with digitally programmable gain. The amplifier has a CMRR of 100 dB and ICMR equal to 0.806 V. The 3 dB bandwidth of the amplifier is 11.78 GHz which is suitable for the applications like navigation, radar instrumentation, and high-frequency signal amplification and conditioning.


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Mozammel H. A. Khan ◽  
Jacqueline E. Rice

Synthesis of reversible sequential circuits is a very new research area. It has been shown that such circuits can be implemented using quantum dot cellular automata. Other work has used traditional designs for sequential circuits and replaced the flip-flops and the gates with their reversible counterparts. Our earlier work uses a direct feedback method without any flip-flops, improving upon the replacement technique in both quantum cost and ancilla inputs. We present here a further improved version of the direct feedback method. Design examples show that the proposed method produces better results than our earlier method in terms of both quantum cost and ancilla inputs. We also propose the first technique for online testing of single line faults in sequential reversible circuits.


VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yin Li ◽  
Yu Zhang ◽  
Xiaoli Guo

Recently, we present a novel Mastrovito form of nonrecursive Karatsuba multiplier for all trinomials. Specifically, we found that related Mastrovito matrix is very simple for equally spaced trinomial (EST) combined with classic Karatsuba algorithm (KA), which leads to a highly efficient Karatsuba multiplier. In this paper, we consider a new special class of irreducible trinomial, namely, xm+xm/3+1. Based on a three-term KA and shifted polynomial basis (SPB), a novel bit-parallel multiplier is derived with better space and time complexity. As a main contribution, the proposed multiplier costs about 2/3 circuit gates of the fastest multipliers, while its time delay matches our former result. To the best of our knowledge, this is the first time that the space complexity bound is reached without increasing the gate delay.


VLSI Design ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Amir Charif ◽  
Alexandre Coelho ◽  
Nacer-Eddine Zergainoh ◽  
Michael Nicolaidis

3D integration can greatly benefit future many-cores by enabling low-latency three-dimensional Network-on-Chip (3D-NoC) topologies. However, due to high cost, low yield, and frequent failures of Through-Silicon Via (TSV), 3D-NoCs are most likely to include only a few vertical connections, resulting in incomplete topologies that pose new challenges in terms of deadlock-free routing and TSV assignment. The routers of such networks require a way to locate the nodes that have vertical connections, commonly known as elevators, and select one of them in order to be able to reach other layers when necessary. In this paper, several alternative TSV selection strategies requiring a constant amount of configurable bits per router are introduced. Each proposed solution consists of a configuration algorithm, which provides each router with the necessary information to locate the elevators, and a routing algorithm, which uses this information at runtime to route packets to an elevator. Our algorithms are compared by simulation to highlight the advantages and disadvantages of each solution under various scenarios, and hardware synthesis results demonstrate the scalability of the proposed approach and its suitability for cost-oriented designs.


VLSI Design ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanhui Ni ◽  
Zhiyao Gong ◽  
Weiwen Chen ◽  
Chengmo Yang ◽  
Keni Qiu

Multilevel Cell Spin-Transfer Torque Random Access Memory (MLC STT-RAM) is a promising nonvolatile memory technology to build registers for its natural immunity to electromagnetic radiation in rad-hard space environment. Unlike traditional SRAM-based registers, MLC STT-RAM exhibits unbalanced write state transitions due to the fact that the magnetization directions of hard and soft domains cannot be flipped independently. This feature leads to nonuniform costs of write states in terms of latency and energy. However, current SRAM-targeting register allocations do not have a clear understanding of the impact of the different write state-transition costs. As a result, those approaches heuristically select variables to be spilled without considering the spilling priority imposed by MLC STT-RAM. Aiming to address this limitation, this paper proposes a state-transition-aware spilling cost minimization (SSCM) policy, to save power when MLC STT-RAM is employed in register design. Specifically, the spilling cost model is first constructed according to the linear combination of different state-transition frequencies. Directed by the proposed cost model, the compiler picks up spilling candidates to achieve lower power and higher performance. Experimental results show that the proposed SSCM technique can save energy by 19.4% and improve the lifetime by 23.2% of MLC STT-RAM-based register design.


VLSI Design ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-1
Author(s):  
Ting-Li Chu ◽  
Sin-Hong Yu ◽  
Chorng-Sii Hwang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document