Supernovae and supernova remnants at low frequencies

Author(s):  
Roger A. Chevalier
2000 ◽  
Vol 25 (3-4) ◽  
pp. 699-702 ◽  
Author(s):  
S. Kumagai ◽  
K. Iwabuchi ◽  
K. Nomoto

1983 ◽  
Vol 101 ◽  
pp. 377-379
Author(s):  
W. Reich ◽  
E. Fürst ◽  
W. Sieber

Radio observations of large supernova remnants (SNRs) with high angular resolution have been provided by modern synthesis instruments preferentially at frequencies below 2 GHz. Since these instruments are sensitive mainly to unresolved emission spots, weak extended SNRs usually remain undetected. Besides this, there are numerous physical parameters, which can be studied more properly at higher frequencies. In particular, the polarization characteristics can be more easily analyzed and reduced to the intrinsic magnetic field orientation. In some cases foreground effects substantially disturb the SNR's field structure at low frequencies.


1996 ◽  
Vol 145 ◽  
pp. 323-331 ◽  
Author(s):  
Zhenru Wang

The oldest historical supernova (SN), recorded by ancient Chinese in 14th Century B.C. on pieces of tortoise shells or bones, is identified with the aid of modern space γ-ray observations. Hard X-rays with energy up to 20 keV were observed from IC 443 by the X-ray satellite Ginga. We infer from these observations the age of IC 443 is ∼ 1000 — 1400 yrs. The result supports the hypothesis that IC 443 is the remnant of the historical SN 837 that occurred during the Tang Dynasty. The association between the supernova remnant (SNR) CTB 80 and SN 1408 has been hotly debated for about ten years and is briefly reviewed and discussed here. A new picture is presented to explain this association. High energy emission from historical SNRs can persist in a multiphase interstellar medium (ISM). As a result, the study of the relationship between SNRs and ancient guest stars has gained new vitality.


Sign in / Sign up

Export Citation Format

Share Document