A hybrid parallel solver for finite element computations

Author(s):  
D. Vanderstraeten ◽  
F. -X. Roux ◽  
R. Keunings
Author(s):  
Mike Porter ◽  
Dennis Martens

In a paper presented in 1994 [1], the authors examined a heat exchanger flange to ascertain the cause for a leak. This examination was conducted using Finite Element (FE) analysis procedures. At that time, it was not practical to accurately model the interaction between the flanges and gaskets as a function of time and the resultant temperature. In the ensuing time period, the available FE technology has improved dramatically. Faster computers and new parallel solver technology allow modeling of the flange components that was not practical 10 years ago. In this paper, the authors will re-examine the exchanger system using current technology and discuss the improved insight that this new technology provides to the problem solution.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document