fe analysis
Recently Published Documents


TOTAL DOCUMENTS

1390
(FIVE YEARS 243)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xueyong Qu ◽  
Hongzhong Xu ◽  
Shuqin Fan ◽  
Xiaole Cheng ◽  
Shengdun Zhao ◽  
...  

In order to improve the unit-power of a wind-driven generator, a wind concentrator with complex shape is installed in front of the impeller, which makes the airflow integrated and accelerated. It is important to manufacture the wind concentrator with high precision. The double-roller clamping spinning (DRCS) is a dieless, flexible spinning process that is very suitable for forming a wind concentrator with complex shape. The profile of a wind concentrator is divided into two parts: the contraction section and the expanding section. The process routes of both the contraction section and the expanding section are determined, and roller path equations are derived. Then the finite element (FE) analysis model that can describe the plastic deformation behavior of the DRCS forming for a wind concentrator is established, and the DRCS process of the flange is simulated. Furthermore, the wall-thickness distribution on the expanding section during the forming process is obtained. Finally, the reliability of the FE model is verified using the experimental results.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pandimani ◽  
Markandeya Raju Ponnada ◽  
Yesuratnam Geddada

Purpose The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The finite-element (FE) simulation of such beams using numerical software is very scarce in the literature and therefore this study is taken to demonstrate the modeling aspects of unbonded partially prestressed concrete (UPPSC) beams. This study aims to present the three-dimensional (3-D) nonlinear FE simulations of UPPSC beams subjected to monotonic static loadings using the numerical analysis package ANSYS. Design/methodology/approach The sensitivity study is carried out with three different mesh densities to obtain the optimum elements that reflect on the load–deflection behavior of numerical models, and the model with optimum element density is used further to model all the UPPSC beams in this study. Three half-symmetry FE model is constructed in ANSYS parametric design language domain with proper boundary conditions at the symmetry plane and support to achieve the same response as that of the full-scale experimental beam available in the literature. The linear and nonlinear material behavior of prestressing tendon and conventional steel reinforcements, concrete and anchorage and loading plates are modeled using link180, solid65 and solid185 elements, respectively. The Newton–Raphson iteration method is used to solve the nonlinear solution of the FE models. Findings The evolution of concrete cracking at critical loadings, yielding of nonprestressed steel reinforcements, stress increment in the prestressing tendon, stresses in concrete elements and the complete load–deflection behavior of the UPPSC beams are well predicted by the proposed FE model. The maximum discrepancy of ultimate moments and deflections of the validated FE models exhibit 13% and −5%, respectively, in comparison with the experimental results. Practical implications The FE analysis of UPPSC beams is done using ANSYS software, which is a versatile tool in contrast to the experimental testing to study the stress increments in the unbonded tendons and assess the complete nonlinear response of partially prestressed concrete beams. The validated numerical model and the techniques presented in this study can be readily used to explore the parametric analysis of UPPSC beams. Originality/value The developed model is capable of predicting the strength and nonlinear behavior of UPPSC beams with reasonable accuracy. The load–deflection plot captured by the FE model is corroborated with the experimental data existing in the literature and the FE results exhibit good agreement against the experimentally tested beams, which expresses the practicability of using FE analysis for the nonlinear response of UPPSC beams using ANSYS software.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Guofang Wu ◽  
Yinlan Shen ◽  
Feng Fu ◽  
Juan Guo ◽  
Haiqing Ren

Wood is an anisotropic material, the mechanical properties of which are strongly influenced by its microstructure. In wood, grain compression strength and modulus are the weakest perpendicular to the grain compared to other grain directions. FE (finite element) models have been developed to investigate the mechanical properties of wood under transverse compression. However, almost all existing models were deterministic. Thus, the variations of geometry of the cellular structure were not considered, and the statistical characteristic of the mechanical property was not involved. This study aimed to develop an approach to investigate the compression property of wood in a statistical sense by considering the irregular geometry of wood cells. First, the mechanical properties of wood under radial perpendicular to grain compression was experimentally investigated, then the statistical characteristic of cell geometry was extracted from test data. Finally, the mechanical property of wood was investigated using the finite element method in combination with the Monte Carlo Simulation (MCS) techniques using randomly generated FE models. By parameter sensitivity analysis, it was found that the occurrence of the yield points was caused by the bending or buckling of the earlywood axial tracheid cell wall in the tangential direction. The MCS-based stochastic FE analysis was revealed as an interesting approach for assessing the micro-mechanical performance of wood and in assisting in understanding the mechanical behavior of wood based on its hierarchical structure.


Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Po-Kuei Wu ◽  
Cheng-Wei Lee ◽  
Wei-Hsiang Sun ◽  
Chun-Li Lin

This study aims to develop a generalizable method for designing a patient-specific reconstructive scaffold implant for a large distal lateral femur defect using finite element (FE) analysis and topology optimization. A 3D solid-core implant for the distal femur defect was designed to withhold the femur load. Data from FE analysis of the solid implant were use for topology optimization to obtain a ‘bone scaffold implant’ with light-weight internal cavity and surface lattice features to allow for filling with bone material. The bone scaffold implant weighed 69.6% less than the original solid-core implant. The results of FE simulation show that the bone repaired with the bone scaffold implant had lower total displacement (12%), bone plate von Mises stress (34%), bone maximum first principal stress (33%), and bone maximum first principal strain (32%) than did bone repaired with bone cement. The trend in experimental strain with increasing load on the composite femur was greater with bone cement than with the bone scaffold implant. This study presents a generalizable method for designing a patient-specific reconstructive scaffold implant for the distal lateral femur defect that has sufficient strength and space for filling with allograft bone.


2021 ◽  
Vol 154 (A2) ◽  
Author(s):  
M C Xu ◽  
C Guedes Soares

This study aims at studying different configurations of the stiffened panels in order to identify robust configurations that would not be much sensitive to the imprecision in boundary conditions that can exist in experimental set ups. A numerical study is conducted to analyze the influence of the stiffener’s geometry and boundary conditions on the ultimate strength of stiffened panels under uniaxial compression. The stiffened panels with different combinations of mechanical material properties and geometric configurations are considered. The four types of stiffened panels analysed are made of mild or high tensile steel and have bar, ‘L’ and ‘U’ stiffeners. To understand the effect of finite element modelling on the ultimate strength of the stiffened panels, four types of FE models are investigated in FE analysis including 3 bays, 1/2+1+1/2 bays, 1+1 bays and 1 bay with different boundary conditions.


Author(s):  
Etana Ferede ◽  
Farhan Gandhi

This paper presents a morphing blade design for wind turbine application with flexibility in chord-wise bending while providing sufficient stiffness to carry the aerodynamic loads. The NACA64 profile is selected for the camber morphing blade demonstrator. A corrugation concept is chosen because it is relatively easy to manufacture and provides sufficient stiffness to resist deformation due to the aerodynamic loads (through the provision of effective stringers) while providing the required flexibility for chord-wise bending. A mechanical actuation mechanism is employed to achieve the desired morphing angle and increase the stiffness of the morphing airfoil section to resist aerodynamic loading. The design of a morphing blade demonstrator is presented together with the manufacturing process. Finally, an experimental study is conducted where the morphing angle is measured for increasing actuation load and compared with FE analysis showing good agreement between the experimental results and results from the finite element analysis in addition to achieving the desired morphing angle.


2021 ◽  

Prefabricated modular steel (PFMS) construction is a more efficient and safe method of constructing a high-quality building with less waste material and labour dependency than traditional steel construction. It is indeed critical to have a precise and valuable intermodular joining system that allows for efficient load transfer, safe handling, and optimal use of modular units' strength. Thus, the purpose of this study was to develop joints using tension bolts and solid tenons welded into the gusset plate (GP). These joints ensured rigid and secure connectivity in both horizontal and vertical directions for the modular units. Using the three-dimensional (3D) finite element (FE) analysis software ABAQUS, the study investigated the nonlinear lateral structural performance of the joint and two-storey modular steel building (MSB). The solid element FE models of joints were then simplified by introducing connectors and beam elements to enhance computational efficiency. Numerous parameters indicated that column tenons were important in determining the joint's structural performance. Moreover, with a standard deviation (SD) of 0.025, the developed connectors and beam element models accurately predicted the structural behaviour of the joints. As a result of their simplification, these joints demonstrated effective load distribution, seismic performance, and ductility while reducing computational time, effort, and complexity. The validity of the FE analysis was then determined by comparing the results to the thirteen joint bending tests performed in the reference.


Sign in / Sign up

Export Citation Format

Share Document