Bioluminescence Imaging of Human Embryonic Stem Cell-Derived Endothelial Cells for Treatment of Myocardial Infarction

Author(s):  
Weijun Su ◽  
Liang Leng ◽  
Zhongchao Han ◽  
Zuoxiang He ◽  
Zongjin Li
PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8443 ◽  
Author(s):  
Zongjin Li ◽  
Kitchener D. Wilson ◽  
Bryan Smith ◽  
Daniel L. Kraft ◽  
Fangjun Jia ◽  
...  

Biomaterials ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 1102-1109 ◽  
Author(s):  
Thomas P. Kraehenbuehl ◽  
Lino S. Ferreira ◽  
Alison M. Hayward ◽  
Matthias Nahrendorf ◽  
André J. van der Vlies ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Wenyi Chen ◽  
Johannes Riegler ◽  
Elena Matsa ◽  
Qi Shen ◽  
Haodi Wu ◽  
...  

Introduction: Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can serve as an unlimited cell source for cardiac regenerative therapy. However, the functional equivalency of both approaches has not been previously reported. Here we performed head-to-head comparison on the beneficial effects of ESC-CM and iPSC-CMs in restoring cardiac function in a rat myocardial infarction (MI) model. Methods & Results: Human ESCs and iPSCs were differentiated into cardiomyocytes using small molecules. FACS analysis confirmed ~85% and ~83% of cells differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T, and immunofluorescence staining demonstrated that ESC-CMs and iPSC-CMs have striated sarcomeric structure (Figure A-B). Both ESC-CMs and iPSC-CMs displayed similar maturity for calcium handling (transient amplitude: ΔF/F 0 = 3.8±0.3; time to peak: ~200 ms; 50% transient duration: ~400 ms). qRT-PCR showed that ESC-CMs and iPSC-CMs expressed CASQ2, GJA5, KCNJ2, KCNJ5, MYH6, MYH7, and SCN5A at comparable levels to human fetal heart tissue. Next, ESC-CMs and iPSC-CMs were injected into the left ventricular free wall of infarcted hearts (adult nude rats; n=14, 10, respectively). Cardiac function was assessed by MRI one month post cell injection and the hearts were harvested and stained for human cardiac markers. Both ESC-CMs and iPSC-CMs could engraft in ischemic rat hearts (Figure C). Comprehensive functional analysis with small animal magnetic resonance imaging (MRI), echocardiography, and pressure-volume loop analysis are underway. Conclusion: We set out to perform head to head comparison for the first time that iPSC-CMs may facilitate cardiac repair at comparable levels to ESC-CMs. Unlike allogeneic ESC-CM therapy, autologous iPSC-CMs could be used to overcome immune rejection for cardiac cell transplantation in the future.


PLoS ONE ◽  
2009 ◽  
Vol 4 (9) ◽  
pp. e7040 ◽  
Author(s):  
Jin Yu ◽  
Ngan F. Huang ◽  
Kitchener D. Wilson ◽  
Jeffrey B. Velotta ◽  
Mei Huang ◽  
...  

2015 ◽  
Vol 21 (1-2) ◽  
pp. 14-25 ◽  
Author(s):  
Maria Jaramillo ◽  
Shibin Mathew ◽  
Hikaru Mamiya ◽  
Saik Kia Goh ◽  
Ipsita Banerjee

2010 ◽  
Vol 28 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Daylon James ◽  
Hyung-song Nam ◽  
Marco Seandel ◽  
Daniel Nolan ◽  
Tyler Janovitz ◽  
...  

2014 ◽  
Vol 103 (suppl 1) ◽  
pp. S13.1-S13
Author(s):  
G Foldes ◽  
E Gara ◽  
Z Lendvai ◽  
D Mathe ◽  
J Skopal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document