scholarly journals Infection of Human Airway Epithelia by Sars Coronavirus is Associated with ACE2 Expression and Localization

Author(s):  
Hong Peng Jia ◽  
Dwight C. Look ◽  
Melissa Hickey ◽  
Lei Shi ◽  
Lecia Pewe ◽  
...  
2005 ◽  
Vol 79 (23) ◽  
pp. 14614-14621 ◽  
Author(s):  
Hong Peng Jia ◽  
Dwight C. Look ◽  
Lei Shi ◽  
Melissa Hickey ◽  
Lecia Pewe ◽  
...  

ABSTRACT Studies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma. As assessed by immunofluorescence staining and membrane biotinylation, ACE2 protein was more abundantly expressed on the apical than the basolateral surface of polarized airway epithelia. Interestingly, ACE2 expression positively correlated with the differentiation state of epithelia. Undifferentiated cells expressing little ACE2 were poorly infected with SARS-CoV, while well-differentiated cells expressing more ACE2 were readily infected. Expression of ACE2 in poorly differentiated epithelia facilitated SARS spike (S) protein-pseudotyped virus entry. Consistent with the expression pattern of ACE2, the entry of SARS-CoV or a lentivirus pseudotyped with SARS-CoV S protein in differentiated epithelia was more efficient when applied to the apical surface. Furthermore, SARS-CoV replicated in polarized epithelia and preferentially exited via the apical surface. The results indicate that infection of human airway epithelia by SARS coronavirus correlates with the state of cell differentiation and ACE2 expression and localization. These findings have implications for understanding disease pathogenesis associated with SARS-CoV and NL63 infections.


2020 ◽  
Vol 1 (4) ◽  
pp. 100059 ◽  
Author(s):  
Andrés Pizzorno ◽  
Blandine Padey ◽  
Thomas Julien ◽  
Sophie Trouillet-Assant ◽  
Aurélien Traversier ◽  
...  

JCI Insight ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
John J. Brewington ◽  
Jessica Backstrom ◽  
Amanda Feldman ◽  
Elizabeth L. Kramer ◽  
Jessica D. Moncivaiz ◽  
...  

2018 ◽  
Vol 141 (6) ◽  
pp. 2074-2084 ◽  
Author(s):  
Manel Essaidi-Laziosi ◽  
Francisco Brito ◽  
Sacha Benaoudia ◽  
Léna Royston ◽  
Valeria Cagno ◽  
...  

Science ◽  
2009 ◽  
Vol 325 (5944) ◽  
pp. 1131-1134 ◽  
Author(s):  
A. S. Shah ◽  
Y. Ben-Shahar ◽  
T. O. Moninger ◽  
J. N. Kline ◽  
M. J. Welsh

2021 ◽  
Author(s):  
Weiran Shen ◽  
Zekun Wang ◽  
Kang Ning ◽  
Fang Cheng ◽  
John F. Engelhardt ◽  
...  

Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney (HEK) 293 cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand-displacement without “hairpin-transfer.” The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right-end ( OriR ), but with extensive deletions in the right-end hairpin (REH), generated viruses in HEK293 cells at a level 10-20 times lower than the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR , but not the one retaining only the OriR , replicated in polarized human airway epithelia. We discovered that the 18-nt sequence (nt 5,403-5,420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was ∼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. Importance Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5’ hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5’/hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that the productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate “rolling hairpin” DNA replication. Notably, the intermediates of viral DNA replication, as revealed two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells, as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding in viral DNA replication and may have implications in development of parvovirus-based viral vectors with alternative properties.


Sign in / Sign up

Export Citation Format

Share Document