scholarly journals Adaptive Tool Path Planning for 5-Axis Sculptured Surface Machining by Machining Strip Evaluation

Author(s):  
Yuan-Shin Lee
Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


2014 ◽  
Vol 635-637 ◽  
pp. 497-501
Author(s):  
Li Min ◽  
Biao Bai ◽  
Yu Hou Wu ◽  
De Hong Zhao

In this paper, we have presented a method to generate efficient NC tool paths based on the surface subdivision. The main objective is to achieve high efficiency in the machining of sculptured surface. The NC machining efficiency can be improved by segmenting the whole surface into distinct areas according to the characters of sculptured surface and by using different size mills and different tool path planning methods to machine the areas. The iso-parametric method and large mills are used in the curvature changing little areas. While the iso-scallop method and small mills are used in curvatures changing large areas. This can make full use of tool path generation methods and mills, which improve the machining efficiency of sculpture effectively.


2007 ◽  
Vol 10-12 ◽  
pp. 308-311
Author(s):  
Li Cheng Fan ◽  
L.N. Sun ◽  
Zhi Jiang Du

In 3-axis NC machining, most algorithms of the sculptured surface tool-path generation are valid for ball-cutter, and the axes are designed to realize pure translation. A tool-path generation algorithm using taper-cuter is proposed in this article. And one axis of the 3-axis NC tool machine is designed to realize swing motion. The Stereo Lithography (STL) model is the most popular triangular mesh approximation of the 3D surface model. Considering the special swing mechanical and taper-cutter, arc-zigzag tool-path planning and deform Z-map grid methods are proposed, which incorporate triangular vertexes method and the Z-map method. Finally, some simulation and experiment results are provided.


Author(s):  
Zezhong C. Chen ◽  
Gang Liu

Due to their complex geometries, sculptured surface parts should be machined with multiple cutters of optimal sizes for high quality and productivity. Current methods of determining cutter sizes, however, are conservative and inefficient; their repeating process includes subjective cutter selection, intensive tool-path generation, and time-consuming gouging-and-interference detection in simulation. Our research proposes a new intelligent approach to multiple standard cutters of maximum sizes for three-axis sculptured surface machining. An innovative generic model of maximum allowable cutters in three-axis surface milling is built to eliminate any cutter causing local gouging and global interference. After the optimum standard cutters are automatically selected, their accessible regions can be identified, and the corresponding tool-paths can be generated, respectively. This approach is practical and effective in the process planning for three-axis milling of sculptured surface parts.


Sign in / Sign up

Export Citation Format

Share Document