A New Tool-Path Generation Algorithm for Sculptured Surface Using Taper-Cutter

2007 ◽  
Vol 10-12 ◽  
pp. 308-311
Author(s):  
Li Cheng Fan ◽  
L.N. Sun ◽  
Zhi Jiang Du

In 3-axis NC machining, most algorithms of the sculptured surface tool-path generation are valid for ball-cutter, and the axes are designed to realize pure translation. A tool-path generation algorithm using taper-cuter is proposed in this article. And one axis of the 3-axis NC tool machine is designed to realize swing motion. The Stereo Lithography (STL) model is the most popular triangular mesh approximation of the 3D surface model. Considering the special swing mechanical and taper-cutter, arc-zigzag tool-path planning and deform Z-map grid methods are proposed, which incorporate triangular vertexes method and the Z-map method. Finally, some simulation and experiment results are provided.

2004 ◽  
Vol 126 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Zezhong C. Chen ◽  
Geoffrey W. Vickers ◽  
Zuomin Dong

Three-axis CNC milling is often used to machine sculptured parts. Due to the complex surface shape of these parts, well-planned tool paths can significantly increase the machining efficiency. In this work a new principle of CNC tool path planning for 3-axis sculptured surface machining is proposed. Generic formula to calculate the steepest tangent direction of a sculptured surface is derived, and the algorithm of the steepest-ascending tool path generation is introduced. A single steepest-ascending tool path has been verified to be more efficient than a single tool path of any other type. The relationship between machining efficiency and three key variables, tool feed direction, cutter shape, and surface shape, is revealed. The newly introduced principle is used in planning tool paths of a sculptured surface to demonstrate the advantages of the steepest-ascending tool paths. This new tool path scheme is further integrated into the more advanced steepest-directed and iso-cusped (SDIC) tool path generation technique. Applications of the new tool path principle and the SDIC tool paths to the machining of sculptured parts are demonstrated.


2010 ◽  
Vol 97-101 ◽  
pp. 2477-2480
Author(s):  
Xu Jing Yang ◽  
Guang Yong Sun ◽  
Qing Li

This paper proposes a new approach to tool path generation in precision machining of parts with sculptured surface. It aims to develop an effective NURBS fitting algorithm suitable for machining sophisticated parts requiring smooth profile on sculptured surface. In order to generate NURBS tool path with fewer control points, a dual-loop fitting technique is proposed in this paper. A general sculptured surface model is used to test the effectiveness of this method. It is shown that the proposed algorithm proved to be robust and effective in generating precise NURBS tool path. This makes the proposed algorithm suitable to convert conventional CNC tool path to more precise NURBS tool path. This approach may be of potential to be widely implemented in the manufacturing industry.


Author(s):  
Eric Wang ◽  
Il-Kyu Hwang ◽  
Yong Se Kim

Abstract We describe an automatic machining tool path generation method that combines local tool path planning for machining features with global tool path planning. From the solid model and the tolerance specifications of the part, machining features are automatically recognized, and geometry-based precedence relations are obtained between these features. From this information, the machining sequence, tool selections, and machining conditions are determined. Machining tool paths are then generated automatically for each setup, combining local and global tool paths. Local tool paths to machine each feature are generated using successive offsetting operations. Global tool paths between features are generated incrementally by searching the adjacency graph of feature free spaces, which represents the current free space of the part. Feature free spaces are obtained by expanding the machining features through their fictitious faces. The start and end positions for the local tool paths of each feature are selected based on a heuristic method to minimize the cost of each segment of the global tool path. This automatic tool path generation method is currently being developed as part of a comprehensive machining process planning system.


Author(s):  
David Manuel Ochoa González ◽  
Joao Carlos Espindola Ferreira

Traditional (direction-parallel and contour-parallel) and non-traditional (trochoidal) tool paths are generated by specialized geometric algorithms based on the pocket shape and various parameters. However, the tool paths generated with those methods do not usually consider the required machining power. In this work, a method for generating power-aware tool paths is presented, which uses the power consumption estimation for the calculation of the tool path. A virtual milling system was developed to integrate with the tool path generation algorithm in order to obtain tool paths with precise power requirement control. The virtual milling system and the tests used to calibrate it are described within this article, as well as the proposed tool path generation algorithm. Results from machining a test pocket are presented, including the real and the estimated power requirements. Those results were compared with a contour-parallel tool path strategy, which has a shorter machining time but has higher in-process power consumption.


2013 ◽  
Vol 274 ◽  
pp. 121-123 ◽  
Author(s):  
Cun Guang Yu

NURBS curve fitting is used for tool path planning for sculptured surface NC machining. The cutter location data is parameterized by equal chord arc length parameterization, and Centripetal Parameterization is improved. It is not only more approach to curves nature equation in theory, but also closer to the interpolated curves in actual fitting. It is directly to reflect the curvature of curves of cutter location in NC machining.


2014 ◽  
Vol 635-637 ◽  
pp. 497-501
Author(s):  
Li Min ◽  
Biao Bai ◽  
Yu Hou Wu ◽  
De Hong Zhao

In this paper, we have presented a method to generate efficient NC tool paths based on the surface subdivision. The main objective is to achieve high efficiency in the machining of sculptured surface. The NC machining efficiency can be improved by segmenting the whole surface into distinct areas according to the characters of sculptured surface and by using different size mills and different tool path planning methods to machine the areas. The iso-parametric method and large mills are used in the curvature changing little areas. While the iso-scallop method and small mills are used in curvatures changing large areas. This can make full use of tool path generation methods and mills, which improve the machining efficiency of sculpture effectively.


2016 ◽  
Vol 88 (5-8) ◽  
pp. 2169-2178 ◽  
Author(s):  
Zhiping Liu ◽  
Xiongbing Li ◽  
Yongfeng Song ◽  
Bing Yi ◽  
Feng Chen

Sign in / Sign up

Export Citation Format

Share Document