scholarly journals FINDING THE LIMIT OF INCOMPLETENESS I

2020 ◽  
Vol 26 (3-4) ◽  
pp. 268-286
Author(s):  
YONG CHENG

AbstractIn this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.

1982 ◽  
Vol 47 (4) ◽  
pp. 824-832 ◽  
Author(s):  
Louise Hay ◽  
Douglas Miller

Ever since Craig-Beth and Addison-Kleene proved their versions of the Lusin-Suslin theorem, work in model theory and recursion theory has demonstrated the value of classical descriptive set theory as a source of ideas and inspirations. During the sixties in particular, J.W. Addison refined the technique of “conjecture by analogy” and used it to generate a substantial number of results in both model theory and recursion theory (see, e.g., Addison [1], [2], [3]).During the past 15 years, techniques and results from recursion theory and model theory have played an important role in the development of descriptive set theory. (Moschovakis's book [6] is an excellent reference, particularly for the use of recursion-theoretic tools.) The use of “conjecture by analogy” as a means of transferring ideas from model theory and recursion theory to descriptive set theory has developed more slowly. Some notable recent examples of this phenomenon are in Vaught [9], where some results in invariant descriptive set theory reflecting and extending model-theoretic results are obtained and others are left as conjectures (including a version of the well-known conjecture on the number of countable models) and in Hrbacek and Simpson [4], where a notion analogous to that of Turing reducibility is used to study Borel isomorphism types. Moschovakis [6] describes in detail an effective descriptive set theory based in large part on classical recursion theory.


1983 ◽  
Vol 48 (4) ◽  
pp. 921-930 ◽  
Author(s):  
Michael Stob

AbstractWe use some simple facts about the wtt-degrees of r.e. sets together with a construction to answer some questions concerning the join and meet operators in the r.e. degrees. The construction is that of an r.e. Turing degree a with just one wtt-degree in a such that a is the join of a minimal pair of r.e. degrees. We hope to illustrate the usefulness of studying the stronger reducibility orderings of r.e. sets for providing information about Turing reducibility.


Author(s):  
Harold Hodes

A reducibility is a relation of comparative computational complexity (which can be made precise in various non-equivalent ways) between mathematical objects of appropriate sorts. Much of recursion theory concerns such relations, initially between sets of natural numbers (in so-called classical recursion theory), but later between sets of other sorts (in so-called generalized recursion theory). This article considers only the classical setting. Also Turing first defined such a relation, now called Turing- (or just T-) reducibility; probably most logicians regard it as the most important such relation. Turing- (or T-) degrees are the units of computational complexity when comparative complexity is taken to be T-reducibility.


Author(s):  
John P. Burgess

This article explores the role of logic in philosophical methodology, as well as its application in philosophy. The discussion gives a roughly equal coverage to the seven branches of logic: elementary logic, set theory, model theory, recursion theory, proof theory, extraclassical logics, and anticlassical logics. Mathematical logic comprises set theory, model theory, recursion theory, and proof theory. Philosophical logic in the relevant sense is divided into the study of extensions of classical logic, such as modal or temporal or deontic or conditional logics, and the study of alternatives to classical logic, such as intuitionistic or quantum or partial or paraconsistent logics. The nonclassical consists of the extraclassical and the anticlassical, although the distinction is not clearcut.


1969 ◽  
Vol 34 (2) ◽  
pp. 256-256 ◽  
Author(s):  
Robert I. Soare

In [2] we constructed an infinite set of natural numbers containing no subset of higher (Turing) degree. Since it is well known that there are nonrecursive sets (e.g. sets of minimal degree) containing no nonrecursive subset of lower degree, it is natural to suppose that these arguments may be combined, but this is false. We prove that every infinite set must contain a nonrecursive subset of either higher or lower degree.


1973 ◽  
Vol 38 (1) ◽  
pp. 18-28 ◽  
Author(s):  
John M. MacIntyre

This paper investigates the problem of extending the recursion theoretic construction of a minimal degree to the Kripke [2]-Platek [5] recursion theory on the ordinals less than an admissible ordinal α, a theory derived from the Takeuti [11] notion of a recursive function on the ordinal numbers. As noted in Sacks [7] when one generalizes the recursion theoretic definition of relative recursiveness to α-recursion theory for α > ω the two usual definitions give rise to two different notions of reducibility. We will show that whenever α is either a countable admissible or a regular cardinal of the constructible universe there is a subset of α whose degree is minimal for both notions of reducibility. The result is an excellent example of a theorem of ordinary recursion theory obtainable via two different constructions, one of which generalizes, the other of which does not. The construction which cannot be lifted to α-recursion theory is that of Spector [10]. We sketch the reasons for this in §3.


Author(s):  
Harold Hodes

In mathematics, a hierarchy is a ‘bottom up’ system classifying entities of some particular sort, a system defined inductively, starting with a ‘basic’ class of such entities, with further (‘higher’) classes of such entities defined in terms of previously defined (‘lower’) classes. Such a classification reflects complexity in some respect, one entity being less complex than another if it appears ‘earlier’ (‘lower’) then that other. Many of the hierarchies studied by logicians construe complexity as complexity of definition, placing such hierarchies within the purview of model theory; but even such notions of complexity are closely tied to species of computational complexity, placing them also in the purview of recursion theory.


Author(s):  
Rod Downey ◽  
Noam Greenberg

This chapter assesses m-topped degrees. The notion of m-topped degrees comes from a general study of the interaction between Turing reducibility and stronger reducibilities among c.e. sets. For example, this study includes the contiguous degrees. A c.e. Turing degree d is m-topped if it contains a greatest degree among the many one degrees of c.e. sets in d. Such degrees were constructed in Downey and Jockusch. The dynamics of the cascading phenomenon occurring in the construction of m-topped degrees strongly resemble the dynamics of the embedding of the 1–3–1 lattice in the c.e. degrees. Similar dynamics occurred in the original construction of a noncomputable left–c.e. real with only computable presentations, which was discussed in the previous chapter.


Sign in / Sign up

Export Citation Format

Share Document