minimal degree
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 25)

H-INDEX

18
(FIVE YEARS 0)

Author(s):  
D. C. L. Bessades ◽  
R. B. dos Santos ◽  
A. C. Vieira

Let [Formula: see text] be a field of characteristic zero and [Formula: see text] the algebra of [Formula: see text] matrices over [Formula: see text]. By the classical Amitsur–Levitzki theorem, it is well known that [Formula: see text] is the smallest degree of a standard polynomial identity of [Formula: see text]. A theorem due to Rowen shows that when the symplectic involution [Formula: see text] is considered, the standard polynomial of degree [Formula: see text] in symmetric variables is an identity of [Formula: see text]. This means that when only certain kinds of matrices are considered in the substitutions, the minimal degree of a standard identity may not remain being the same. In this paper, we present some results about the minimal degree of standard identities in skew or symmetric variables of odd degree of [Formula: see text] in the symplectic graded involution case. Along the way, we also present the minimal total degree of a double Capelli polynomial identity in symmetric variables of [Formula: see text] with transpose involution.



2021 ◽  
Vol 344 (8) ◽  
pp. 112453
Author(s):  
Bingchen Qian ◽  
Chengfei Xie ◽  
Gennian Ge




Author(s):  
Maximilian Schmidt

AbstractIn this paper we consider the question of when all Seshadri constants on a product of two isogenous elliptic curves $$E_1\times E_2$$ E 1 × E 2 without complex multiplication are integers. By studying elliptic curves on $$E_1\times E_2$$ E 1 × E 2 we translate this question into a purely numerical problem expressed by quadratic forms. By solving that problem, we show that all Seshadri constants on $$E_1\times E_2$$ E 1 × E 2 are integers if and only if the minimal degree of an isogeny $$E_1\rightarrow E_2$$ E 1 → E 2 equals 1 or 2. Furthermore, this method enables a characterization of irreducible principal polarizations on $$E_1\times E_2$$ E 1 × E 2 .



2021 ◽  
pp. 2150032
Author(s):  
Purnaprajna Bangere ◽  
Jayan Mukherjee ◽  
Debaditya Raychaudhury

In this paper, we study K3 double structures on minimal rational surfaces [Formula: see text]. The results show there are infinitely many non-split abstract K3 double structures on [Formula: see text] parametrized by [Formula: see text], countably many of which are projective. For [Formula: see text] there exists a unique non-split abstract K3 double structure which is non-projective (see [J.-M. Drézet, Primitive multiple schemes, preprint (2020), arXiv:2004.04921 , to appear in Eur. J. Math.]). We show that all projective K3 carpets can be smoothed to a smooth K3 surface. One of the byproducts of the proof shows that unless [Formula: see text] is embedded as a variety of minimal degree, there are infinitely many embedded K3 carpet structures on [Formula: see text]. Moreover, we show any embedded projective K3 carpet on [Formula: see text] with [Formula: see text] arises as a flat limit of embeddings degenerating to 2:1 morphism. The rest do not, but we still prove the smoothing result. We further show that the Hilbert points corresponding to the projective K3 carpets supported on [Formula: see text], embedded by a complete linear series are smooth points if and only if [Formula: see text]. In contrast, Hilbert points corresponding to projective (split) K3 carpets supported on [Formula: see text] and embedded by a complete linear series are always smooth. The results in [P. Bangere, F. J. Gallego and M. González, Deformations of hyperelliptic and generalized hyperelliptic polarized varieties, preprint (2020), arXiv:2005.00342 ] show that there are no higher dimensional analogues of the results in this paper.



2021 ◽  
Vol 15 (4) ◽  
pp. 277-281
Author(s):  
Geraldo de Assis Junior ◽  
Sergio Mota Alves


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Primož Potočnik ◽  
Pablo Spiga

AbstractThe minimal degree of a permutation group 𝐺 is defined as the minimal number of non-fixed points of a non-trivial element of 𝐺. In this paper, we show that if 𝐺 is a transitive permutation group of degree 𝑛 having no non-trivial normal 2-subgroups such that the stabilizer of a point is a 2-group, then the minimal degree of 𝐺 is at least \frac{2}{3}n. The proof depends on the classification of finite simple groups.



2020 ◽  
Vol 26 (3-4) ◽  
pp. 268-286
Author(s):  
YONG CHENG

AbstractIn this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.



Sign in / Sign up

Export Citation Format

Share Document