Further Development of New Deprotection Chemistry for Cysteine and Selenocysteine Side Chain Protecting Groups

Author(s):  
Alayne L. Schroll ◽  
Robert J. Hondal
1977 ◽  
Vol 32 (7-8) ◽  
pp. 495-506 ◽  
Author(s):  
E. Wünsch ◽  
G. Wendlberger ◽  
A. Hallett ◽  
E. Jaeger ◽  
S. Knof ◽  
...  

A new total synthesis of the tetratriacontapeptide amide corresponding to the proposed primary structure of human big gastrin I is described. The synthetic route was based on the preparation of six suitably protected fragments, related to sequence 28 - 34, 23 - 27, 21 - 22, 15-20, 9 - 14, and 1 - 8, to be used as building blocks for the total synthesis. The protecting groups were selected according to the Schwyzer-Wünsch strategy of maximum side chain protection based on tertiary alcohols, also for the imidazol function of histidine. Subsequent assembly of the six fragments by three different pathways using the highly efficient Wünsch-Weygand condensation procedure to ensure minimum racemization, followed by deprotection of the synthetic products via exposure to trifluoroacetic acid and final purification by ion-exchange chromatography on DEAE-Sephadex A-25 and partition chromatography on Sephadex G-25, led to human big gastrin I, homogeneous within the limits of the analytical methods used. The biological activity of the synthetic product proved to be 50 percent higher than that of human little gastrin I. The 32-leucine analogue of human big gastrin I was prepared in the same way.


Synthesis ◽  
2018 ◽  
Vol 50 (23) ◽  
pp. 4683-4689 ◽  
Author(s):  
Mark Trudell ◽  
Ryan McKinnie ◽  
Tasneam Darweesh ◽  
Phoebe Zito ◽  
Terrell Shields

An efficient method for the construction of the 5-fluoro-4-hydroxypentyl side chain common to a number of synthetic cannabinoid metabolites was developed. A series of hydroxyl protecting groups was examined to assess the viability as orthogonal protecting groups for epoxidation and regioselective hydrofluorination. The 1-[5-fluoro-4-(diphenyl-tert-butylsilyloxy)]pentyl tosylate was prepared in 67% overall yield (six steps) from pent-4-en-1-ol and was employed for the synthesis of the 4-hydroxy metabolites of the synthetic cannabinoid 5F-APINACA and CUMYL-5F-PINACA.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 145 ◽  
Author(s):  
Krisztina M. Papp-Wallace ◽  
Vijay Kumar ◽  
Elise T. Zeiser ◽  
Scott A. Becka ◽  
Focco van den Akker

Carbapenem-resistant Enterobacteriaceae are a significant threat to public health, and a major resistance determinant that promotes this phenotype is the production of the OXA-48 carbapenemase. The activity of OXA-48 towards carbapenems is a puzzling phenotype as its hydrolytic activity against doripenem is non-detectable. To probe the mechanistic basis for this observation, we determined the 1.5 Å resolution crystal structure of the deacylation deficient K73A variant of OXA-48 in complex with doripenem. Doripenem is observed in the Δ1R and Δ1S tautomeric states covalently attached to the catalytic S70 residue. Likely due to positioning of residue Y211, the carboxylate moiety of doripenem is making fewer hydrogen bonding/salt-bridge interactions with R250 compared to previously determined carbapenem OXA structures. Moreover, the hydroxyethyl side chain of doripenem is making van der Waals interactions with a key V120 residue, which likely affects the deacylation rate of doripenem. We hypothesize that positions V120 and Y211 play important roles in the carbapenemase profile of OXA-48. Herein, we provide insights for the further development of the carbapenem class of antibiotics that could render them less effective to hydrolysis by or even inhibit OXA carbapenemases.


2020 ◽  
Vol 21 (12) ◽  
pp. 4464
Author(s):  
Mahama Alhassan ◽  
Ashish Kumar ◽  
John Lopez ◽  
Fernando Albericio ◽  
Beatriz G. de la Torre

The protection of side-chain arginine in solid-phase peptide synthesis requires attention since current protecting groups have several drawbacks. Herein, the NO2 group, which is scarcely used, has been revisited. This work shows that it prevents the formation of δ-lactam, the most severe side-reaction during the incorporation of Arg. Moreover, it is stable in solution for long periods and can be removed in an easy-to-understand manner. Thus, this protecting group can be removed while the protected peptide is still anchored to the resin, with SnCl2 as reducing agent in mild acid conditions using 2-MeTHF as solvent at 55 °C. Furthermore, we demonstrate that sonochemistry can facilitate the removal of NO2 from multiple Arg-containing peptides.


Sign in / Sign up

Export Citation Format

Share Document