Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers

2007 ◽  
pp. 51-69
Author(s):  
Igor N. Esau ◽  
Øyvind Byrkjedal
2006 ◽  
Vol 45 (9) ◽  
pp. 1224-1243 ◽  
Author(s):  
David Pino ◽  
Jordi Vilà-Guerau de Arellano ◽  
Si-Wan Kim

Abstract Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The simpler of the two is based on a sharp discontinuity at the inversion (zeroth-order jump), whereas the second one prescribes a finite depth of the inversion zone (first-order jump). Large-eddy simulation data are used to provide the initial conditions for the mixed-layer models, and to verify their results. Two different atmospheric boundary layers with different stratification in the free atmosphere are analyzed. It is shown that, despite the simplicity of the zeroth-order-jump model, it provides similar results to the first-order-jump model and can reproduce the evolution of the mixed-layer variables obtained by the large-eddy simulations in sheared convective boundary layers. The mixed-layer model with both closures compares better with the large-eddy simulation results in the atmospheric boundary layer characterized by a moderate wind shear and a weak temperature inversion. These results can be used to represent the flux of momentum, heat, and other scalars at the entrainment zone in general circulation or chemistry transport models.


2017 ◽  
Vol 9 (1) ◽  
pp. 19-38 ◽  
Author(s):  
Zhihong Tan ◽  
Tapio Schneider ◽  
João Teixeira ◽  
Kyle G. Pressel

Author(s):  
G. De Prisco ◽  
A. Keating ◽  
U. Piomelli ◽  
E. Balaras

1997 ◽  
Vol 336 ◽  
pp. 151-182 ◽  
Author(s):  
BRANKO KOSOVIĆ

It has been recognized that the subgrid-scale (SGS) parameterization represents a critical component of a successful large-eddy simulation (LES). Commonly used linear SGS models produce erroneous mean velocity profiles in LES of high-Reynolds-number boundary layer flows. Although recently proposed approaches to solving this problem have resulted in significant improvements, questions about the true nature of the SGS problem in shear-driven high-Reynolds-number flows remain open.We argue that the SGS models must capture inertial transfer effects including backscatter of energy as well as its redistribution among the normal SGS stress components. These effects are the consequence of nonlinear interactions and anisotropy. In our modelling procedure we adopt a phenomenological approach whereby the SGS stresses are related to the resolved velocity gradients. We show that since the SGS stress tensor is not frame indifferent a more general nonlinear model can be applied to the SGS parameterization. We develop a nonlinear SGS model capable of reproducing the effects of SGS anisotropy characteristic for shear-driven boundary layers. The results obtained using the nonlinear model for the LES of a neutral shear-driven atmospheric boundary layer show a significant improvement in prediction of the non-dimensional shear and low-order statistics compared to the linear Smagorinsky-type models. These results also demonstrate a profound effect of the SGS model on the flow structures.


Sign in / Sign up

Export Citation Format

Share Document