renormalization group theory
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 13)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Vol 11 (17) ◽  
pp. 7968
Author(s):  
Chang Xia ◽  
Cuiying Zhou ◽  
Fengxian Zhu ◽  
Zhen Liu ◽  
Guangjun Cui

The internal damage of red-bed soft rock induced by water is pervasive. The accumulation, growth, and localization of damage is a multi-scale process that can lead to significant strength loss in red-bed soft rock. Yet, research on the critical state of deterioration process considering multi-scale failure is limited due to high degree of system freedom. Renormalization group theory is an effective approach to find critical point of phase transition in a disordered system. To apply renormalization group theory in red-bed soft rocks, this article firstly analyzed their microstructures. Then, the granular unit model and stripy unit model are proposed to describe the self-similar characteristics of red-bed soft rocks. The calculation results based on renormalization group theory are consistent with the experimental results. The critical reductions of strength induced by water are 60% in light-yellow silty mudstone and 80% in grey silty mudstone. In addition, the critical state of damage propagation caused by stress is also studied and the analytical solution is derived. Results show that the renormalization group theory can effectively couple the micro damage and strength deterioration which provides guidance to the engineering.


2021 ◽  
Vol 15 ◽  
Author(s):  
Erik D. Fagerholm ◽  
W. M. C. Foulkes ◽  
Yasir Gallero-Salas ◽  
Fritjof Helmchen ◽  
Karl J. Friston ◽  
...  

We derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be “scalable” if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler’s third law from the timeseries. In contrast, a “scale free” system is one in which there is no characteristic length scale, meaning that images of such a system are statistically unchanged at different levels of magnification. As an example of such a system, we use calcium imaging collected in murine cortex and show that the dynamical critical exponent, as defined in renormalization group theory, can be estimated in an empirical biological setting. We find that a task-relevant region of the cortex is associated with higher dynamical critical exponents in task vs. spontaneous states and vice versa for a task-irrelevant region.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Takashi Yanagisawa

Abstract We investigate the renormalization group theory of the generalized multi-vertex sine-Gordon model by employing the dimensional regularization method and also the Wilson renormalization group method. The vertex interaction is given by $\cos(k_j\cdot \phi)$, where $k_j$ ($j=1,2,\ldots,M$) are momentum vectors and $\phi$ is an $N$-component scalar field. The beta functions are calculated for the sine-Gordon model with multiple cosine interactions. The second-order correction in the renormalization procedure is given by the two-point scattering amplitude for tachyon scattering. We show that new vertex interaction with the momentum vector $k_{\ell}$ is generated from two vertex interactions with vectors $k_i$ and $k_j$ when $k_i$ and $k_j$ meet the condition $k_{\ell}=k_i\pm k_j$, called the triangle condition. A further condition $k_i\cdot k_j=\pm 1/2$ is required within the dimensional regularization method. The renormalization group equations form a set of closed equations when $\{k_j\}$ form an equilateral triangle for $N=2$ or a regular tetrahedron for $N=3$. The Wilsonian renormalization group method gives qualitatively the same result for beta functions.


Sign in / Sign up

Export Citation Format

Share Document