scholarly journals Littelmann Patterns and Weyl Group Multiple Dirichlet Series of Type D

Author(s):  
Gautam Chinta ◽  
Paul E. Gunnells
Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter reinterprets Statements A and B in a different context, and yet again directly proves that the reinterpreted Statement B implies the reinterpreted Statement A in Theorem 19.10. The p-parts of Weyl group multiple Dirichlet series, with their deformed Weyl denominators, may be expressed as partition functions of exactly solved models in statistical mechanics. The transition to ice-type models represents a subtle shift in emphasis from the crystal basis representation, and suggests the introduction of a new tool, the Yang-Baxter equation. This tool was developed to prove the commutativity of the row transfer matrix for the six-vertex and similar models. This is significant because Statement B can be formulated in terms of the commutativity of two row transfer matrices. This chapter presents an alternate proof of Statement B using the Yang-Baxter equation.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes Type A Weyl group multiple Dirichlet series. It begins by defining the basic shape of the class of Weyl group multiple Dirichlet series. To do so, the following parameters are introduced: Φ‎, a reduced root system; n, a positive integer; F, an algebraic number field containing the group μ‎₂ₙ of 2n-th roots of unity; S, a finite set of places of F containing all the archimedean places, all places ramified over a ℚ; and an r-tuple of nonzero S-integers. In the language of representation theory, the weight of the basis vector corresponding to the Gelfand-Tsetlin pattern can be read from differences of consecutive row sums in the pattern. The chapter considers in this case expressions of the weight of the pattern up to an affine linear transformation.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara's crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang–Baxter equation.


2008 ◽  
Vol 2008 (623) ◽  
pp. 1-23 ◽  
Author(s):  
Gautam Chinta ◽  
Solomon Friedberg ◽  
Paul E. Gunnells

Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter translates the definitions of the Weyl group multiple Dirichlet series into the language of crystal bases. It reinterprets the entries in these arrays and the accompanying boxing and circling rules in terms of the Kashiwara operators. Thus, what appeared as a pair of unmotivated functions on Gelfand-Tsetlin patterns in the previous chapter now takes on intrinsic representation theoretic meaning. The discussion is restricted to crystals of Cartan type Aᵣ. The Weyl vector, denoted by ρ‎, is considered as an element of the weight lattice, and the bijection between Gelfand-Tsetlin patterns and tableaux is described. The chapter also examines the λ‎-part of the multiple Dirichlet series in terms of crystal graphs.


Author(s):  
Benjamin Brubaker ◽  
Daniel Bump ◽  
Gautam Chinta ◽  
Solomon Friedberg ◽  
Jeffrey Hoffstein

Sign in / Sign up

Export Citation Format

Share Document