RNA Structure Analysis by Chemical Probing with DMS and CMCT

Author(s):  
José M. Andrade ◽  
Ricardo F. dos Santos ◽  
Cecília M. Arraiano
2018 ◽  
Vol 48 (5) ◽  
pp. 1915-1927 ◽  
Author(s):  
Fariha Kanwal ◽  
Ting Chen ◽  
Yunlon Zhang ◽  
Altaf Simair ◽  
Cai Rujie ◽  
...  

Background/Aims: RNA elements such as catalytic RNA, riboswitch, microRNA, and long non coding RNA (lncRNA) play central roles in many cellular processes. Studying diverse RNA functions require large quantities of RNA for precise structure analysis. Current RNA structure and function studies can benefit from improved RNA quantity and quality, simpler separation procedure and enhanced accuracy of structural analysis. Methods: Here we present an optimized protocol for analyzing the structure of any RNA, including in vitro transcription, size-exclusion chromatography (SEC) based denaturing purification and improved secondary structure analysis by chemical probing. Results: We observed that higher Mg2+, nucleoside triphosphate (NTP) concentrations and longer reaction duration can improve the RNA yield from in vitro transcription, specifically for longer and more complicated constructs. Our improved SEC-based denaturing RNA purification effectively halved the experiment duration and labor without introducing any contaminant. Finally, this study increased the accuracy and signal-to-noise ratio (SNR) of selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemical probing for analyzing RNA structure. Conclusion: Part or all of our modified method can improve almost any RNA-related study from protein-RNA interaction analysis to crystallography.


Methods ◽  
2020 ◽  
Vol 183 ◽  
pp. 68-75 ◽  
Author(s):  
Phillip Tomezsko ◽  
Harish Swaminathan ◽  
Silvi Rouskin

2013 ◽  
Vol 32 (21) ◽  
pp. 2804-2818 ◽  
Author(s):  
Maria Anokhina ◽  
Sergey Bessonov ◽  
Zhichao Miao ◽  
Eric Westhof ◽  
Klaus Hartmuth ◽  
...  

2019 ◽  
Author(s):  
Anthony M. Mustoe ◽  
Nicole Lama ◽  
Patrick S. Irving ◽  
Samuel W. Olson ◽  
Kevin M. Weeks

ABSTRACTRNA structure and dynamics are critical to biological function. However, strategies for determining RNA structure in vivo are limited, with established chemical probing and newer duplex detection methods each having notable deficiencies. Here we convert the common reagent dimethyl sulfate (DMS) into a useful probe of all four RNA nucleotides. Building on this advance, we introduce PAIR-MaP, which uses single-molecule correlated chemical probing to directly detect base pairing interactions in cells. PAIR-MaP has superior resolution and accuracy compared to alternative experiments, can resolve alternative pairing interactions of structurally dynamic RNAs, and enables highly accurate structure modeling, including of RNAs containing multiple pseudoknots and extensively bound by proteins. Application of PAIR-MaP to human RNase MRP and two bacterial mRNA 5'-UTRs reveals new functionally important and complex structures undetectable by conventional analyses. PAIR-MaP is a powerful, experimentally concise, and broadly applicable strategy for directly visualizing RNA base pairs and dynamics in cells.


2019 ◽  
Vol 116 (49) ◽  
pp. 24574-24582 ◽  
Author(s):  
Anthony M. Mustoe ◽  
Nicole N. Lama ◽  
Patrick S. Irving ◽  
Samuel W. Olson ◽  
Kevin M. Weeks

RNA structure and dynamics are critical to biological function. However, strategies for determining RNA structure in vivo are limited, with established chemical probing and newer duplex detection methods each having deficiencies. Here we convert the common reagent dimethyl sulfate into a useful probe of all 4 RNA nucleotides. Building on this advance, we introduce PAIR-MaP, which uses single-molecule correlated chemical probing to directly detect base-pairing interactions in cells. PAIR-MaP has superior resolution compared to alternative experiments, can resolve multiple sets of pairing interactions for structurally dynamic RNAs, and enables highly accurate structure modeling, including of RNAs containing multiple pseudoknots and extensively bound by proteins. Application of PAIR-MaP to human RNase MRP and 2 bacterial messenger RNA 5′ untranslated regions reveals functionally important and complex structures undetected by prior analyses. PAIR-MaP is a powerful, experimentally concise, and broadly applicable strategy for directly visualizing RNA base pairs and dynamics in cells.


Sign in / Sign up

Export Citation Format

Share Document