Analysis of Commitment Point Attainment in Algae Dividing by Multiple Fission

2021 ◽  
pp. 89-101
Author(s):  
Veronika Kselíková ◽  
Vilém Zachleder ◽  
Kateřina Bišová
Keyword(s):  
Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 861
Author(s):  
Veronika Kselíková ◽  
Vilém Zachleder ◽  
Kateřina Bišová

Extensive in vivo replacement of hydrogen by deuterium, a stable isotope of hydrogen, induces a distinct stress response, reduces cell growth and impairs cell division in various organisms. Microalgae, including Chlamydomonas reinhardtii, a well-established model organism in cell cycle studies, are no exception. Chlamydomonas reinhardtii, a green unicellular alga of the Chlorophyceae class, divides by multiple fission, grows autotrophically and can be synchronized by alternating light/dark regimes; this makes it a model of first choice to discriminate the effect of deuterium on growth and/or division. Here, we investigate the effects of high doses of deuterium on cell cycle progression in C. reinhardtii. Synchronous cultures of C. reinhardtii were cultivated in growth medium containing 70 or 90% D2O. We characterize specific deuterium-induced shifts in attainment of commitment points during growth and/or division of C. reinhardtii, contradicting the role of the “sizer” in regulating the cell cycle. Consequently, impaired cell cycle progression in deuterated cultures causes (over)accumulation of starch and lipids, suggesting a promising potential for microalgae to produce deuterated organic compounds.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 157
Author(s):  
Idan Koren ◽  
Sammy Boussiba ◽  
Inna Khozin-Goldberg ◽  
Aliza Zarka

Several green algae can divide by multiple fission and spontaneously synchronize their cell cycle with the available light regime. The yields that can be obtained from a microalgal culture are directly affected by cell cycle events. Chromochloris zofingiensis is considered as one of the most promising microalgae for biotechnological applications due to its fast growth and the flexible trophic capabilities. It is intensively investigated in the context of bio-commodities production (carotenoids, storage lipids); however, the pattern of cell-cycle events under common cultivation strategies was not yet characterized for C. zofingiensis. In this study, we have employed fluorescence microscopy to characterize the basic cell-cycle dynamics under batch and continuous modes of phototrophic C. zofingiensis cultivation. Staining with SYBR green—applied in DMSO solution—enabled, for the first time, the clear and simple visualization of polynuclear stages in this microalga. Accordingly, we concluded that C. zofingiensis divides by a consecutive pattern of multiple fission, whereby it spontaneously synchronizes growth and cell division according to the available illumination regime. In high-light continuous culture or low-light batch culture, C. zofingiensis cell-cycle was completed within several light-dark (L/D) cycles (14 h/10 h); however, cell divisions were synchronized with the dark periods only in the high-light continuous culture. In both modes of cultivation, daughter cell release was mainly facilitated by division of 8 and 16-polynuclear cells. The results of this study are of both fundamental and applied science significance and are also important for the development of an efficient nuclear transformation system for C. zofingiensis.


Cell Calcium ◽  
2009 ◽  
Vol 45 (4) ◽  
pp. 346-357 ◽  
Author(s):  
Connie M.C. Lam ◽  
Patrick K.K. Yeung ◽  
Hon Cheung Lee ◽  
Joseph T.Y. Wong

2014 ◽  
Vol 65 (10) ◽  
pp. 2585-2602 ◽  
Author(s):  
Kateřina Bišová ◽  
Vilém Zachleder

PROTOPLASMA ◽  
2001 ◽  
Vol 216 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
C. M. C. Lam ◽  
C. Chong ◽  
J. T. Y. Wong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document