cycle progression
Recently Published Documents


TOTAL DOCUMENTS

5009
(FIVE YEARS 1012)

H-INDEX

154
(FIVE YEARS 15)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 482
Author(s):  
Li-Zhi Cheng ◽  
Dan-Ling Huang ◽  
Min Liao ◽  
Ke-Ming Li ◽  
Zhao-Qiu Wu ◽  
...  

Moreollic acid, a caged-tetraprenylated xanthone from Gamboge, has been indicated as a potent antitumor molecule. In the present study, a series of moreollic acid derivatives with novel structures were designed and synthesized, and their antitumor activities were determined in multifarious cell lines. The preliminary screening results showed that all synthesized compounds selectively inhibited human colon cancer cell proliferation. TH12-10, with an IC50 of 0.83, 1.10, and 0.79 μM against HCT116, DLD1, and SW620, respectively, was selected for further antitumor mechanism studies. Results revealed that TH12-10 effectively inhibited cell proliferation by blocking cell-cycle progression from G1 to S. Besides, the apparent structure–activity relationships of target compounds were discussed. To summarize, a series of moreollic acid derivatives were discovered to possess satisfactory antitumor potentials. Among them, TH12-10 displays the highest antitumor activities against human colon cancer cells, in which the IC50 values in DLD1 and SW620 are lower than that of 5-fluorouracil.


Onco ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 34-35
Author(s):  
Chiaki Takahashi ◽  
Jun-ya Kato

The accelerated cell cycle progression is one of the hallmarks of human cancer [...]


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 246
Author(s):  
Martina Mascaro ◽  
Inês Lages ◽  
Germana Meroni

TRIM36 is a member of the tripartite motif (TRIM) family of RING-containing proteins, also known as Haprin, which was first discovered for its abundance in testis and found to be implicated in the spermatozoa acrosome reaction. TRIM36 is a microtubule-associated E3 ubiquitin ligase that plays a role in cytoskeletal organization, and according to data gathered in different species, coordinates growth speed and stability, acting on the microtubules’ plus end, and impacting on cell cycle progression. TRIM36 is also crucial for early developmental processes, in Xenopus, where it is needed for dorso-ventral axis formation, but also in humans as bi-allelic mutations in the TRIM36 gene cause a form of severe neural tube closure defect, called anencephaly. Here, we review TRIM36-related mechanisms implicated in such composite physiological and pathological processes.


Author(s):  
Aling Shen ◽  
Liya Liu ◽  
Yue Huang ◽  
Zhiqing Shen ◽  
Meizhu Wu ◽  
...  

Background: HAUS6 participates in microtubule-dependent microtubule amplification, but its role in malignancies including colorectal cancer (CRC) has not been explored. We therefore assessed the potential oncogenic activities of HAUS6 in CRC.Results: HAUS6 mRNA and protein expression is higher in CRC tissues, and high HAUS6 expression is correlated with shorter overall survival in CRC patients. HAUS6 knockdown in CRC cell lines suppressed cell growth in vitro and in vivo by inhibiting cell viability, survival and arresting cell cycle progression at G0/G1, while HAUS6 over-expression increased cell viability. We showed that these effects are dependent on activation of the p53/p21 signalling pathway by reducing p53 and p21 degradation. Moreover, combination of HAUS6 knockdown and 5-FU treatment further enhanced the suppression of cell proliferation of CRC cells by increasing activation of the p53/p21 pathway.Conclusion: Our study highlights a potential oncogenic role for HAUS6 in CRC. Targeting HAUS6 may be a promising novel prognostic marker and chemotherapeutic target for treating CRC patients.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yingji Chen ◽  
Ying Ji ◽  
Suo Liu ◽  
Yicai Liu ◽  
Wei Feng ◽  
...  

Abstract Background The roles of Polypyrimidine tract-binding protein 3 (PTBP3) in regulating lung squamous cell carcinoma (LUSC) cells progression is unclear. The aim of this study was to investigate the role of PTBP3 in LUSC. Methods Expression and survival analysis of PTBP3 was firstly investigated using TCGA datasets. Quantitative reverse transcription PCR and Western blot were performed to detect PTBP3 expression in clinical samples. Moreover, cell counting kit 8 (CCK-8) assays, colony formation assays and in vivo tumor formation assays were used to examine the effects of PTBP3 on LUSC cell proliferation. RNA-sequence and analysis explores pathways regulated by PTBP3.Flow cytology was used analyzed cell cycle. Cell cycle-related markers were analyzed by Western blot. Results PTBP3 was found to be overexpressed in LUSC tissues compared with normal tissues. High PTBP3 expression was significantly correlated with poor prognosis. In vitro and vivo experiments demonstrated that PTBP3 knockdown caused a significant decrease in the proliferation rate of cells. Bioinformatics analysis showed that PTBP3 involved in cell cycle pathway regulation in LUSC. Furthermore, PTBP3 knockdown arrested cell cycle progression at S phase via decreasing CDK2/Cyclin A2 complex. In addition, downregulation of PTBP3 significantly decreased the expression of CDC25A. Conclusions Our results suggest that PTBP3 regulated LUSC cell proliferation via cell cycle and might be a potential target for molecular therapy of LUSC.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kun Liu ◽  
Qiannan Liu ◽  
Yanli Sun ◽  
Jinwei Fan ◽  
Yu Zhang ◽  
...  

Aberration in the control of cell cycle contributes to the development and progression of many diseases including cancers. Ksg1 is a Schizosaccharomyces pombe fission yeast homolog of mammalian phosphoinositide-dependent protein kinase 1 (PDK1) which is regarded as a signaling hub for human tumorigenesis. A previous study reported that Ksg1 plays an important role in cell cycle progression, however, the underlying mechanism remains elusive. Our genomic library screen for novel elements involved in Ksg1 function identified two serine/threonine kinases, namely SAD family kinase Cdr2 and another PDK1 homolog Ppk21, as multicopy suppressors of the thermosensitive phenotype of ksg1-208 mutant. We found that overexpression of Ppk21 or Cdr2 recovered the defective cell cycle transition of ksg1-208 mutant. In addition, ksg1-208 Δppk21 cells showed more marked defects in cell cycle transition than each single mutant. Moreover, overexpression of Ppk21 failed to recover the thermosensitive phenotype of the ksg1-208 mutant when Cdr2 was lacking. Notably, the ksg1-208 mutation resulted in abnormal subcellular localization and decreased abundance of Cdr2, and Ppk21 deletion exacerbated the decreased abundance of Cdr2 in the ksg1-208 mutant. Intriguingly, expression of a mitotic inducer Cdc25 was significantly decreased in ksg1-208, Δppk21, or Δcdr2 cells, and overexpression of Ppk21 or Cdr2 partially recovered the decreased protein level of Cdc25 in the ksg1-208 mutant. Altogether, our findings indicated that Cdr2 is a novel downstream effector of PDK1 homologs Ksg1 and Ppk21, both of which cooperatively participate in regulating cell cycle progression, and Cdc25 is involved in this process in fission yeast.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 203
Author(s):  
Yasuko Tokunaga ◽  
Ken-Ichiro Otsuyama ◽  
Naoki Hayashida

Cell division and cell cycle mechanism has been studied for 70 years. This research has revealed that the cell cycle is regulated by many factors, including cyclins and cyclin-dependent kinases (CDKs). Heat shock transcription factors (HSFs) have been noted as critical proteins for cell survival against various stresses; however, recent studies suggest that HSFs also have important roles in cell cycle regulation-independent cell-protective functions. During cell cycle progression, HSF1, and HSF2 bind to condensed chromatin to provide immediate precise gene expression after cell division. This review focuses on the function of these HSFs in cell cycle progression, cell cycle arrest, gene bookmarking, mitosis and meiosis.


2022 ◽  
Author(s):  
Miji Jeon ◽  
Danielle L Schmitt ◽  
Minjoung Kyoung ◽  
Songon An

Glucose metabolism has been studied extensively to understand functional interplays between metabolism and a cell cycle. However, our understanding of cell cycle-dependent metabolic adaptation particularly in human cells remains largely elusive. Meanwhile, human enzymes in glucose metabolism are shown to functionally organize into three different sizes of a multienzyme metabolic assembly, the glucosome, to regulate glucose flux in a size-dependent manner. Here, using fluorescence single-cell imaging techniques, we discover that glucosomes spatiotemporally oscillate during a cell cycle in an assembly size-dependent manner. Importantly, their oscillation at single-cell levels is in accordance with functional contributions of glucose metabolism to cell cycle progression at a population level. Collectively, we demonstrate functional oscillation of glucosomes during cell cycle progression and thus their biological significance to human cell biology.


Sign in / Sign up

Export Citation Format

Share Document