high light
Recently Published Documents


TOTAL DOCUMENTS

1799
(FIVE YEARS 468)

H-INDEX

82
(FIVE YEARS 9)

2022 ◽  
Vol 369 ◽  
pp. 130913
Author(s):  
Dorthe H. Larsen ◽  
Hua Li ◽  
Arjen C. van de Peppel ◽  
Celine C.S. Nicole ◽  
Leo F.M. Marcelis ◽  
...  

2022 ◽  
Author(s):  
Xin Liu ◽  
Wojciech J Nawrocki ◽  
Roberta Croce

Non-photochemical quenching (NPQ) is the process that protects photosynthetic organisms from photodamage by dissipating the energy absorbed in excess as heat. In the model green alga Chlamydomonas reinhardtii, NPQ was abolished in the knock-out mutants of the pigment-protein complexes LHCSR3 and LHCBM1. However, while LHCSR3 was shown to be a pH sensor and switching to a quenched conformation at low pH, the role of LHCBM1 in NPQ has not been elucidated yet. In this work, we combine biochemical and physiological measurements to study short-term high light acclimation of npq5, the mutant lacking LHCBM1. We show that while in low light in the absence of this complex, the antenna size of PSII is smaller than in its presence, this effect is marginal in high light, implying that a reduction of the antenna is not responsible for the low NPQ. We also show that the mutant expresses LHCSR3 at the WT level in high light, indicating that the absence of this complex is also not the reason. Finally, NPQ remains low in the mutant even when the pH is artificially lowered to values that can switch LHCSR3 to the quenched conformation. It is concluded that both LHCSR3 and LHCBM1 need to be present for the induction of NPQ and that LHCBM1 is the interacting partner of LHCSR3. This interaction can either enhance the quenching capacity of LHCSR3 or connect this complex with the PSII supercomplex.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Qi Shi ◽  
Hu Sun ◽  
Stefan Timm ◽  
Shibao Zhang ◽  
Wei Huang

Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Zhi-Lan Zeng ◽  
Hu Sun ◽  
Xiao-Qian Wang ◽  
Shi-Bao Zhang ◽  
Wei Huang

Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.


Author(s):  
Martina Bečková ◽  
Roman Sobotka ◽  
Josef Komenda

AbstractThe repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.


2022 ◽  
Author(s):  
Xiao Xiao ◽  
Linxuan He ◽  
Xiaomei Zhang ◽  
Yu Jin ◽  
Jinsong Chen

Abstract Transgenerational plasticity allows offsprings to be more adaptive in the environmental conditions experienced by their parents. It is suggested that differential effects of transgenerational plasticity on growth performance of offspring ramets may help to understand successful invasion of invasive plant with clonal growth comparing with its congeneric native one. A pot experiment using invasive herb Wedelia trilobata and its congeneric native species Wedelia chinensis was conducted to investigate differential effects of high/low light treatment experienced by mother ramets on morphological and photosynthetic properties of offspring ramets subjected to stressful low light treatment. For W. chinensis, stolon length and maximum carboxylation rate (Vmax) in offspring ramets from mother ramets subjected to low light treatment were significantly greater than those in offspring ramets from mother ramets subjected to high light treatment. For W. trilobata, leaf area and potential maximum net photosynthetic rate (Pmax) in offspring ramets from mother ramets subjected to low light treatment were significantly greater than those in offspring ramets from mother ramets subjected to high light treatment. We tentatively concluded that effects of transgenerational plasticity on morphological and photosynthetic properties among clonal plants could be species-specific. In addition, more favorable effect of transgenerational plasticity on growth performance was observed in the invasive plant than in its congeneric native species. It is suggested that transgenerational plasticity may be very important for successful invasion of invasive plant with clonal growth, especially in maternal environmental conditions. So, our experiment provides new insight into invasive mechanism of invasive plants.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ning Wang ◽  
Tianyu Ji ◽  
Xiao Liu ◽  
Qiang Li ◽  
Kulihong Sairebieli ◽  
...  

Seedlings in regenerating layer are frequently attacked by herbivorous insects, while the combined effects of defoliation and shading are not fully understood. In the present study, two Leguminosae species (Robinia pseudoacacia and Amorpha fruticosa) were selected to study their responses to combined light and defoliation treatments. In a greenhouse experiment, light treatments (L+, 88% vs L−, 8% full sunlight) and defoliation treatments (CK, without defoliation vs DE, defoliation 50% of the upper crown) were applied at the same time. The seedlings’ physiological and growth traits were determined at 1, 10, 30, and 70 days after the combined treatment. Our results showed that the effects of defoliation on growth and carbon allocation under high light treatments in both species were mainly concentrated in the early stage (days 1–10). R. pseudoacacia can achieve growth recovery within 10 days after defoliation, while A. fruticosa needs 30 days. Seedlings increased SLA and total chlorophyll concentration to improve light capture efficiency under low light treatments in both species, at the expense of reduced leaf thickness and leaf lignin concentration. The negative effects of defoliation treatment on plant growth and non-structural carbohydrates (NSCs) concentration in low light treatment were significantly higher than that in high light treatment after recovery for 70 days in R. pseudoacacia, suggesting sufficient production of carbohydrate would be crucial for seedling growth after defoliation. Plant growth was more sensitive to defoliation and low light stress than photosynthesis, resulting in NSCs accumulating during the early period of treatment. These results illustrated that although seedlings could adjust their resource allocation strategy and carbon dynamics in response to combined defoliation and light treatments, individuals grown in low light conditions will be more suppressed by defoliation. Our results indicate that we should pay more attention to understory seedlings’ regeneration under the pressure of herbivorous insects.


2022 ◽  
Vol 58 (4) ◽  
pp. 19-27
Author(s):  
Peng Jian Xiang ◽  
Zhu Xiao Rao ◽  
Sun Shi Dong ◽  
Zhu He Ping

The effect of bamboo fiber content on mechanical properties, moisture permeability and light transmittance of composite membrane was studied. The results show that the tensile strength of the composite film is increased by 30%, and the mechanical properties of PVA film are improved obviously with the addition of bamboo cellulose, which can be used as a good reinforcing material of PVA matrix. Bamboo cellulose composite film is a kind of transparent material because of its high light transmittance.


2022 ◽  
Author(s):  
Paul M Berube ◽  
Tyler J O'Keefe ◽  
Anna N Rasmussen ◽  
Sallie W Chisholm

Prochlorococcus is an abundant photosynthetic bacterium in the oligotrophic open ocean where nitrogen (N) often limits the growth of phytoplankton. Prochlorococcus has evolved into multiple phylogenetic clades of high-light (HL) adapted and low-light (LL) adapted cells. Within these clades, cells encode a variety of N assimilation traits that are differentially distributed among members of the population. Among these traits, nitrate (NO3-) assimilation is generally restricted to a few clades of high-light adapted cells (the HLI, HLII, and HLVI clades) and a single clade of low-light adapted cells (the LLI clade). Most, if not all, cells belonging to the LLI clade have the ability to assimilate nitrite (NO2-), with a subset of this clade capable of assimilating both NO3- and NO2-. Cells belonging to the LLI clade are maximally abundant at the top of the nitracline and near the primary NO2- maximum layer. In some ecosystems, this peak in NO2- concentration may be a consequence of incomplete assimilatory NO3- reduction by phytoplankton. This phenomenon is characterized by a bottleneck in the downstream half of the NO3- assimilation pathway and the concomitant accumulation and release of NO2- by phytoplankton cells. Given the association between LLI Prochlorococcus and the primary NO2- maximum layer, we hypothesized that some Prochlorococcus exhibit incomplete assimilatory NO3- reduction. To assess this, we monitored NO2- accumulation in batch culture for 3 Prochlorococcus strains (MIT0915, MIT0917, and SB) and 2 Synechococcus strains (WH8102 and WH7803) when grown on NO3- as the sole N source. Only MIT0917 and SB accumulated external NO2- during growth on NO3-. Approximately 20-30% of the NO3- transported into the cell by MIT0917 was released as NO2-, with the balance assimilated into biomass. We further observed that co-cultures using NO3- as the sole N source could be established for MIT0917 and a Prochlorococcus strain that can assimilate NO2- but not NO3-. In these co-cultures, the NO2- released by MIT0917 was efficiently consumed by its partner strain during balanced exponential growth. Our findings highlight the potential for emergent metabolic partnerships within Prochlorococcus populations that are mediated by the production and consumption of the N cycle intermediate, NO2-.


2022 ◽  
Author(s):  
Collin Steen ◽  
Adrien Burlacot ◽  
Audrey Short ◽  
Krishna K. Niyogi ◽  
Graham Fleming

Photosynthetic organisms use sunlight as the primary energy source to fix CO2. However, in the environment, light energy fluctuates rapidly and often exceeds saturating levels for periods ranging from seconds to hours, which can lead to detrimental effects for cells. Safe dissipation of excess light energy occurs primarily by non-photochemical quenching (NPQ) processes. In the model green microalga Chlamydomonas reinhardtii, photoprotective NPQ is mostly mediated by pH-sensing light-harvesting complex stress-related (LHCSR) proteins and the redistribution of light-harvesting antenna proteins between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to the dynamic functioning of NPQ under fluctuating light conditions remains unknown. Here, by monitoring NPQ throughout multiple high light-dark cycles with fluctuation periods ranging from 1 to 10 minutes, we show that the dynamics of NPQ depend on the frequency of light fluctuations. Mutants impaired in the accumulation of LHCSRs (npq4, lhcsr1, and npq4lhcsr1) showed significantly less quenching during illumination, demonstrating that LHCSR proteins are responsible for the majority of NPQ during repetitive exposure to high light fluctuations. Activation of NPQ was also observed during the dark phases of light fluctuations, and this was exacerbated in mutants lacking LHCSRs. By analyzing 77K chlorophyll fluorescence spectra and chlorophyll fluorescence lifetimes and yields in a mutant impaired in state transition, we show that this phenomenon arises from state transition. Finally, we quantified the contributions of LHCSRs and state transition to the overall NPQ amplitude and dynamics for all light periods tested and compared those with cell growth under various periods of fluctuating light. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.


Sign in / Sign up

Export Citation Format

Share Document