Electrophysiological Recordings of Voltage-Dependent and Mechanosensitive Currents in Sensory Hair Cells of the Auditory and Vestibular Organs of the Mouse

Author(s):  
Artur A. Indzhykulian ◽  
Stuart L. Johnson ◽  
Gwenaëlle S. G. Géléoc
1997 ◽  
Vol 78 (6) ◽  
pp. 3125-3132 ◽  
Author(s):  
Abdesslam Chrachri ◽  
Roddy Williamson

Chrachri, Abdesslam and Roddy Williamson. Voltage-dependent conductances in primary sensory hair cells. J. Neurophysiol. 78: 3125–3132, 1997. Cephalopods, such as sepia, squid, and octopus, show a well-developed and sophisticated control of balance particularly during prey capture and escape behaviors. There are two separate areas of sensory epithelium in cephalopod statocysts, a macula/statolith system, which detects linear accelerations (gravity), and a crista/cupula system, which detects rotational movements. The aim of this study is to characterize the ionic conductances in the basolateral membrane of primary sensory hair cells. These were studied using a whole cell patch-clamp technique, which allowed us to identify five ionic conductances in the isolated primary hair cells; an inward sodium current, an inward calcium current, and three potassium outward currents. These outward currents were distinguishable on the basis of their voltage-dependence and pharmacological sensitivities. First, a transient outward current ( I A) was elicited by depolarizing voltage steps from a holding potential of −60 mV, was inactivated by holding the cell at −40 mV, and was blocked by 4-aminopyridine. A second, voltage-sensitive, outward current with a sustained time course was identified. This current was not blocked by 4-aminopyridine nor inactivated at a holding potential of −40 mV and hence could be separated from I A using these protocols. A third outward current that depended on Ca2+ entry for its activation was detected, this current was identified by its sensitivity to Ca2+ channel blockers such as Co2+ and Cd2+ and by the N-shaped profile of its current-voltage curve. Inward currents were studied using cesium aspartate solution in the pipette to block the outward currents. Two inward currents were observed in the primary sensory hair cells. A fast transient inward current, which is presumably responsible for spike generation. This inward current appeared as a rapidly activating inward current; this was strongly voltage dependent. Three lines of evidence suggest that this fast transient inward current is a Na+ current ( I Na). First, it was blocked by tetrodotoxin (TTX); second, it also was blocked by Na+-free saline; and third, it was inactivated when primary hair cells were held at a potential more than −40 mV. The sustained inward current was not affected by TTX and was increased in amplitude 5 min after equimolar Ba2+ replaced Ca2+ as a charge carrier. This inward current also was blocked after external application of 2 mmol/l Co2+ or Cd2+. Furthermore, this current was reduced significantly in a dose-dependent manner by nifedipine, suggesting that it is an L-type Ca2+ current ( I Ca).


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Qiuxiang Zhang ◽  
Suna Li ◽  
Hiu-Tung C. Wong ◽  
Xinyi J. He ◽  
Alisha Beirl ◽  
...  

Cell Calcium ◽  
2012 ◽  
Vol 52 (3-4) ◽  
pp. 327-337 ◽  
Author(s):  
Mark A. Rutherford ◽  
Tina Pangršič

2002 ◽  
Vol 329 (2) ◽  
pp. 133-136 ◽  
Author(s):  
F Abbate ◽  
S Catania ◽  
A Germanà ◽  
T González ◽  
B Diaz-Esnal ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruishuang Geng ◽  
David N Furness ◽  
Chithra K Muraleedharan ◽  
Jinsheng Zhang ◽  
Alain Dabdoub ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e60866 ◽  
Author(s):  
Rachel Clemens Grisham ◽  
Katie Kindt ◽  
Karin Finger-Baier ◽  
Bettina Schmid ◽  
Teresa Nicolson

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Gyo Eun Gu ◽  
Chul Soon Park ◽  
Hyun-Ju Cho ◽  
Tai Hwan Ha ◽  
Joonwon Bae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document