transient inward current
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 1)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 15 (6) ◽  
pp. e0009421
Author(s):  
Artur Santos-Miranda ◽  
Julliane V. Joviano-Santos ◽  
Jaqueline O. Sarmento ◽  
Alexandre D. Costa ◽  
Allysson T. C. Soares ◽  
...  

Background Chagas disease (CD) is a neglected disease that induces heart failure and arrhythmias in approximately 30% of patients during the chronic phase of the disease. Despite major efforts to understand the cellular pathophysiology of CD there are still relevant open questions to be addressed. In the present investigation we aimed to evaluate the contribution of the Na+/Ca2+ exchanger (NCX) in the electrical remodeling of isolated cardiomyocytes from an experimental murine model of chronic CD. Methodology/Principal findings Male C57BL/6 mice were infected with Colombian strain of Trypanosoma cruzi. Experiments were conducted in isolated left ventricular cardiomyocytes from mice 180–200 days post-infection and with age-matched controls. Whole-cell patch-clamp technique was used to measure cellular excitability and Real-time PCR for parasite detection. In current-clamp experiments, we found that action potential (AP) repolarization was prolonged in cardiomyocytes from chagasic mice paced at 0.2 and 1 Hz. After-depolarizations, both subthreshold and with spontaneous APs events, were more evident in the chronic phase of experimental CD. In voltage-clamp experiments, pause-induced spontaneous activity with the presence of diastolic transient inward current was enhanced in chagasic cardiomyocytes. AP waveform disturbances and diastolic transient inward current were largely attenuated in chagasic cardiomyocytes exposed to Ni2+ or SEA0400. Conclusions/Significance The present study is the first to describe NCX as a cellular arrhythmogenic substrate in chagasic cardiomyocytes. Our data suggest that NCX could be relevant to further understanding of arrhythmogenesis in the chronic phase of experimental CD and blocking NCX may be a new therapeutic strategy to treat arrhythmias in this condition.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Yejia Song ◽  
Nesrine El-Bizri ◽  
Sridharan Rajamani ◽  
Luiz Belardinelli

Introduction: The β-adrenergic agonist isoproterenol (ISO) is known to induce the arrhythmogenic transient inward current (I Ti ) and delayed afterdepolarization (DAD) via a stimulation of L-type Ca 2+ current. Recent studies found that ISO-induced DADs in cardiac tissues are inhibited by GS967, a selective blocker of the late Na + current (I NaL ). Thus, we hypothesize that I NaL contributes to the actions of ISO, and selective inhibition of this current will reduce ISO-induced I Ti and DADs. Methods: Transmembrane currents and action potentials of rabbit and guinea pig (GP) ventricular myocytes were recorded using the whole-cell patch-clamp technique. ISO (0.1 μM), GS967 (1 μM) and the Na + channel blocker tetrodotoxin (TTX, 3 μM) were used in the experiments. Results: In rabbit myocytes, application of ISO caused an increase in the amplitude of I NaL from -0.10±0.03 to -0.32±0.04 pA/pF (n = 17, p < 0.05). The ISO-stimulated I NaL was inhibited by GS967 and TTX. In one series of experiments, ISO increased the I NaL from -0.14±0.04 to -0.35±0.06 pA/pF, and GS967 applied in the presence of ISO reduced the current to -0.14±0.03 pA/pF (n = 9, p < 0.05). In another series of experiments, the amplitude of I NaL was increased by ISO from -0.17±0.08 to -0.41±0.09 pA/pF, and was decreased to -0.09±0.08 pA/pF when TTX was applied with ISO (n = 5, p < 0.05). Application of ISO also induced I Ti and DADs. GS967 applied in the presence of ISO inhibited the amplitude of I Ti by 52±6%, from -1.79±0.30 to -0.87±0.16 pA/pF (n = 8, p < 0.05). Consistent with the inhibition of I Ti , GS967 suppressed the amplitude of ISO-induced DADs by 56±12%, from 6.54±1.59 to 3.22±1.27 mV (n = 5, p < 0.05). Similarly, in GP myocytes ISO-induced I Ti and DADs were decreased by GS967 from -1.14±0.21 to -0.73±0.16 pA/pF (n = 7, p < 0.05) and from 7.16±0.59 to 4.67±0.24 mV (n = 5, p < 0.05), respectively. Conclusions: An increased I NaL is likely to contribute to the proarrhythmic effects of ISO in cardiac myocytes. GS967 significantly attenuated ISO-induced I NaL , I Ti and DADs, suggesting that inhibiting this current could be an effective strategy to antagonize the arrhythmogenic actions of β-adrenergic stimulation.


2005 ◽  
Vol 22 (3) ◽  
pp. 359-370 ◽  
Author(s):  
ABDESSLAM CHRACHRI ◽  
LISA NELSON ◽  
RODDY WILLIAMSON

A new tissue slice preparation of the cuttlefish eye is described that permits patch-clamp recordings to be acquired from intact photoreceptors during stimulation of the retina with controlled light flashes. Whole-cell recordings using this preparation, from the retinas of very youngSepia officinalisdemonstrated that the magnitude, latency, and kinetics of the flash-induced photocurrent are closely dependent on the magnitude of the flash intensity. Depolarizing steps to voltages more positive than −40 mV, from a membrane holding potential of −60 mV, induced a transient inward current followed by a larger, more sustained outward current in these early-stage photoreceptors. The latter current resembled the delayed rectifier (IK) already identified in many other nerve cells, including photoreceptors. This current was activated at −30 mV from a holding potential of −60 mV, had a sustained time course, and was blocked in a dose-dependent manner by tetraethylammonium chloride (TEA). The smaller, transient, inward current appeared at potentials more positive than −50 mV, reached peak amplitude at −30 mV and decreased with further depolarization. This current was characterized as the sodium current (INa) on the basis that it was inactivated at holding potentials above −40 mV, was blocked by tetrodotoxin (TTX) and was insensitive to cobalt.Intracellular perfusion of the photoreceptors,viathe patch pipette, demonstrated that U-73122 and heparin blocked the evoked photocurrent in a dose-dependent manner, suggesting the involvement of the phospholipase C (PLC) and inositol 1,4,5-triphosphate (InsP3), respectively, in the phototransduction cascade. Perfusion with cyclic GMP increased significantly the evoked photocurrent, while the inclusion of phorbol-12,13-dibutyrate reduced significantly the evoked photocurrent, supporting the involvement of cGMP and the diacylglycerol (DAG) pathways, respectively, in the cuttlefish transduction process.


2005 ◽  
Vol 288 (1) ◽  
pp. C100-C108 ◽  
Author(s):  
Shunichi Kajioka ◽  
Shinsuke Nakayama ◽  
Haruhiko Asano ◽  
Alison F. Brading

The urinary bladder pressure during micturition consists of two components: an initial, phasic component and a subsequent, sustained component. To investigate the excitation mechanisms underlying the sustained pressure, we recorded from membranes of isolated detrusor cells from the pig, which can be used as a model for human micturition. Parasympathomimetic agents promptly evoke a large transient inward current, and subsequently during its continuous presence, oscillating inward currents of relatively small amplitudes are observed. The two types of inward current are considered to cause the phasic and sustained pressure rises, respectively. Ionic substitution and applications of channel blockers revealed that Ca2+-activated Cl− channels were responsible for the large transient and oscillating inward currents. Furthermore, the inclusion of guanosine 5′- O-(2-thiodiphosphate) in the patch pipette indicates that both inward currents involve G proteins. However, applications of heparin in the patch pipette and of xestospongin C in the bathing solution suggest a signaling pathway other than inositol 1,4,5-trisphosphate (IP3) operating in the inward current oscillations, unlike the initial transient inward current. This IP3-independent inward current oscillation system required both sustained Ca2+ influx from the extracellular space and Ca2+ release from the intracellular stores. These two requirements are presumably SKF-96365-sensitive cation channels and ryanodine receptors, respectively. Experiments with various Ca2+ concentrations suggested that Ca2+ influx from the extracellular space plays a major role in pacing the oscillatory rhythm. The fact that distinct mechanisms underlie the two types of inward current may help in development of clinical treatments of, for example, urinary incontinence and residual urine volume control.


2003 ◽  
Vol 2 (1) ◽  
pp. 61
Author(s):  
M ROCCHETTI ◽  
A BESANA ◽  
M LAGROTTERIA ◽  
R MICHELETTI ◽  
A ZAZA

2001 ◽  
Vol 79 (1) ◽  
pp. 34-42
Author(s):  
A Molleman ◽  
L WC Liu ◽  
J D Huizinga

Muscarinic receptor mediated membrane currents and contractions were studied in isolated canine colon circular smooth muscle cells. Carbachol (10–5M) evoked a slow transient inward current that was superimposed by a transient outward current at holding potentials greater than –50 mV. Carbachol contracted the cells by 70 ± 2%. The effects of carbachol were blocked by atropine (10–6M), tetraethyl ammonium (20 mM), and BAPTA-AM (25 mM applied for 20 min). The inward current and contraction were not sensitive to diltiazem (10–5M), nitrendipine (3 × 10–7M), niflumic acid (10–5M), or N-phenylanthranilic acid (10–4M), but were gradually inhibited after repetitive stimulations in Ca2+free solution. Ni2+(2 mM) inhibited the inward current by 67 ± 4%. The inward current reversed at +15 mV. The outward component could be selectively inhibited by iberiotoxin (20 nM) or by intracellular Cs+. Repeated stimulation in the presence of cyclopiazonic acid (CPA, 3 µM) inhibited the carbachol-induced outward current and partially inhibited contraction. CPA did not inhibit the inward current. In conclusion, muscarinic receptor stimulation evoked a CPA-sensitive calcium release that caused contraction and a CPA-insensitive transient inward current was activated that is primarily carried by Ca2+ions and is sensitive to Ni2+.Key words: calcium, carbachol, smooth muscle, cyclopiazonic acid, sarcoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document