Boundary Layer Theory

Author(s):  
J. A. Fox
2018 ◽  
Vol 49 (8) ◽  
pp. 793-807
Author(s):  
Vladimir Efimovich Kovalev

1991 ◽  
Vol 113 (2) ◽  
pp. 228-232 ◽  
Author(s):  
J. W. Murdock ◽  
D. R. Keyser

Equations for the extrapolation of calibration data for ASME/PTC 6 throat tap nozzles are derived from boundary layer theory. The results match published coefficients with a maximum difference of +0.03 percent. It is also shown that the effects of transition in the boundary layer extend to throat Reynolds numbers in excess of 10,000,000, far beyond the capacity of any known calibration laboratory. The present PTC 6 requirement that calibration data must be in the fully turbulent range cannot be met with current facilities.


This paper contains a study of the similarity solutions of the boundary layer equations for the case of strong blowing through a porous surface. The main part of the boundary layer is thick and almost inviscid in these conditions, but there is a thin viscous region where the boundary layer merges into the main stream. The asymptotic solutions appropriate to these two regions are matched to one another when the blowing velocity is large. The skin friction is found from the inner solution, which is independent of the outer solution, but the displacement thickness involves both solutions and is of more complicated form.


Sign in / Sign up

Export Citation Format

Share Document