Analytical theory of a lunar artificial satellite with third body perturbations

Author(s):  
Bernard De Saedeleer
2012 ◽  
Vol 22 (10) ◽  
pp. 1250240 ◽  
Author(s):  
J. P. S. CARVALHO ◽  
D. C. MOURÃO ◽  
A. ELIPE ◽  
R. VILHENA DE MORAES ◽  
A. F. B. A. PRADO

Low-altitude, near-polar orbits are very desirable for scientific missions to study the natural satellites of the planets of the Solar System, such as Europa, that is one of the natural satellites of Jupiter. The problem is analyzed considering that an artificial satellite is orbiting Europa and that this spacecraft is perturbed by the nonuniform distribution of mass of the planetary satellite (J2, J3, C22) and by the gravitational attraction of the third-body. We present an analytical theory using the averaged model and applications were done by performing numerical integrations of the analytical equations developed. Using the averaged method, several frozen orbits were obtained. Some of them has low inclination, low altitude and long lifetime. Numerical simulations are performed using the software Mercury, to compare the results obtained using the analytical theory.


2009 ◽  
Vol 2009 ◽  
pp. 1-24 ◽  
Author(s):  
Jean Paulo dos Santos Carvalho ◽  
Rodolpho Vilhena de Moraes ◽  
Antônio Fernando Bertachini de Almeida Prado

Herein, we consider the problem of a lunar artificial satellite perturbed by the nonuniform distribution of mass of the Moon taking into account the oblateness (J2) and the equatorial ellipticity (sectorial termC22). Using Lie-Hori method up to the second order short-period terms of the Hamiltonian are eliminated. A study is done for the critical inclination in first and second order of the disturbing potential. Coupling terms due to the nonuniform distribution of mass of the Moon are analyzed. Numerical simulations are presented with the disturbing potential of first and second order is. It an approach for the behavior of the longitude of the ascending node of a near Sun-synchronous polar lunar orbit is presented.


2004 ◽  
Vol 1017 (1) ◽  
pp. 434-449 ◽  
Author(s):  
BERNARD DE SAEDELEER ◽  
JACQUES HENRARD

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Carlos Renato Huaura Solórzano ◽  
Antonio Fernando Bertachini de Almeida Prado

The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made.


Sign in / Sign up

Export Citation Format

Share Document