disturbing potential
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Hany Mahbuby ◽  
Yazdan Amerian ◽  
Amirhossein Nikoofard ◽  
Mehdi Eshagh

AbstractThe gravity field is a signature of the mass distribution and interior structure of the Earth, in addition to all its geodetic applications especially geoid determination and vertical datum unification. Determination of a regional gravity field model is an important subject and needs to be investigated and developed. Here, the spherical radial basis functions (SBFs) are applied in two scenarios for this purpose: interpolating the gravity anomalies and solving the fundamental equation of physical geodesy for geoid or disturbing potential determination, which has the possibility of being verified by the Global Navigation Satellite Systems (GNSS)/levelling data. Proper selections of the number of SBFs and optimal location of the applied SBFs are important factors to increase the accuracy of estimation. In this study, the gravity anomaly interpolation based on the SBFs is performed by Gauss-Newton optimisation with truncated singular value decomposition, and a Quasi-Newton method based on line search to solve the minimisation problems with a small number of iterations is developed. In order to solve the fundamental equation of physical geodesy by the SBFs, the truncated Newton optimisation is applied as the Hessian matrix of the objective function is not always positive definite. These two scenarios are applied on the terrestrial free-air gravity anomalies over the topographically rough area of Auvergne. The obtained accuracy for the interpolated gravity anomaly model is 1.7 mGal with the number of point-masses about 30% of the number of observations, and 1.5 mGal in the second scenario where the number of used kernels is also 30%. These accuracies are root mean square errors (RMSE) of the differences between predicted and observed gravity anomalies at check points. Moreover, utilising the optimal constructed model from the second scenario, the RMSE of 9 cm is achieved for the differences between the gravimetric height anomalies derived from the model and the geometric height anomalies from GNSS/levelling points.


2021 ◽  
Vol 13 (21) ◽  
pp. 4362
Author(s):  
Spiros Pagiatakis ◽  
Athina Peidou

Geopotential models derived from Gravity Recovery and Climate Experiment (GRACE) mission measurements are significantly obscured by the presence of a systematic artifact, known as longitudinal stripes. Based on our previous work (Peidou and Pagiatakis, 2020) we provide an in-depth analysis of the latitudinal sampling characteristics of GRACE and we reveal the intriguing sampling mechanism that creates sub-Nyquist artifacts (stripes). Because the sub-Nyquist artifacts are poorly understood, we provide a simple simulation example to elucidate the mechanism of the sub-Nyquist artifact generation. Subsequently, we randomly select June 2009 daily GPS precise science orbits for GRACE-A to produce ground tracks to sample the low frequency disturbing potential (geoid) along the parallel of ϕ=10° N. The sampled geoid is then deinterlaced in space to produce a monthly data sequence whose detailed analysis shows that the sub-Nyquist artifacts (stripes) are produced from a critical sampling rate of the low degree gravitational field that is related to the ratio m/n of two mutually prime integers, where m is the number of days it takes to have a nearly repeat orbit and n is the number of complete orbits in one day. We perform extensive analyses of GRACE Level-2 data over a period of eight years to show the variability in the orbital characteristics that are directly linked to the orbit resonances (via integers m and n). It turns out that during short repeat cycle resonances the stripes are amplified. Finally, to minimize the presence of stripes in Level-2 data products, it is recommended that orbits of future missions should be designed to avoid the critical m/n ratios while appropriately monitoring and adjusting them during the mission. For completed missions, or missions that are already active, force modelling the latitudinal low frequency disturbing potential may be a viable and most preferred approach to filtering.


2021 ◽  
Author(s):  
Willi Freeden

<p>The lecture highlights arguments that, coming from multiscale mathematics, have fostered the advancement of gravimetry, as well as those that, generated by gravimetric problems, have contributed to the enhancement in constructive approximation and numerics. Inverse problems in gravimetry are delt with multiscale mollifier decorrelation strategies. Two examples are studied in more detail: (i) Vening Meinesz multiscale surface mollifier regularization to determine locally the Earth's disturbing potential from deflections of vertical, (ii) Newton multiscale volume mollifier regularization of the inverse gravimetry problem to derive locally the density contrast distribution from functionals of the Newton integral and to detect fine particulars of geological relevance. All in all, the Vening Meinesz medal  lecture is meant as an  \lq \lq appetizer'' served to enjoy the tasty meal "Mathematical Geoscience Today'' to be shared by geoscientists and mathematicians in the field of gravimetry. It provides innovative concepts and locally relevant applications presented in a monograph to be published by Birkhäuser in the book series “Geosystems Mathematics” (2021).</p>


2021 ◽  
Author(s):  
Georgios S. Vergos ◽  
Ilias N. Tziavos ◽  
Dimitrios A. Natsiopoulos ◽  
Elisavet G. Mamagiannou ◽  
Eleftherios A. Pitenis

<p>In the frame of the GeoGravGOCE project, funded by the Hellenic Foundation for Research Innovation, GOCE Satellite Gravity Gradiometry (SGG) data are to be used for regional geoid and gravity field refinement as well as for potential determination in the frame of the International Height Reference Frame (IHRF). An inherent step in the geoid computation with either stochastic or spectral methods is the reduction of the related disturbing potential functionals within the well-known Remove-Compute-Restore (RCR) procedure. In this work we evaluate the latest, Release 6 (R6), satellite only and combined Global Geopotential Models (GGMs) which rely solely on GOCE and on land gravity data. The evaluation is performed over the established network of 1542 GPS/Levelling benchmarks over Greece mainland (BMs), which have been used in the past for the evaluation of GOCE GGMs. We employ the spectral enhancement approach, during which the GOCE-based GGMs are evaluated every one degree to the maximum degree of expansion coupled by EGM2008 and high-frequency RTM effects. This synthesis resolves wavelengths corresponding to maximum degree 216,000, hence the omission error is at the few mm-level. TIM-R6, DIR-R6, GOCO06s and XGM2019e are evaluated using EGM2008 residuals to the GPS/Levelling as the ground truth. From the results achieved, the optimal combination degree of a GOCE-only GGM augmented with EGM2008 is selected to be used in the sequel as reference field for the practical determination of the gravimetric geoid over Greece.</p>


2020 ◽  
Vol 10 (21) ◽  
pp. 7892
Author(s):  
Marek Trojanowicz ◽  
Magdalena Owczarek-Wesołowska ◽  
Lubomil Pospíšil ◽  
Olgierd Jamroz

In this paper, some features of the local disturbing potential model developed by the GGI method (based on Geophysical Gravity Inversion) were analyzed. The model was developed for the area of the Western Carpathians covering the Polish–Slovak border. A detailed assessment of the model’s property was made regarding the accuracy of the disturbing potential values (height anomalies), gravity values, complete Bouguer anomalies (CBA), and differences between geoid undulations and height anomalies (N−ζ). Obtained accuracies of the GGI quasigeoid model (in terms of standard deviation of the residuals to the reference quasigeoid models) were at the level of ±2.2 cm for Poland and ±0.9 cm for the Slovak area. In terms of gravity, there was shown dependence of the accuracy of the GGI model on the digital elevation model (DEM) resolution, the point height, the density of gravity data used, and used reference density of topography model. The best obtained results of gravity prediction were characterized by an error of approximately 1 mGal. The GGI approach were compared with classical gravity prediction methods (using CBA and topographic-isostatic anomalies supported by Kriging prediction), getting very similar results. On the basis of the GGI model, CBA and differences (N−ζ) were also determined. The strong dependence of resolution of the CBA model obtained by GGI approach, on the size of the constant density zones, has been demonstrated. This significantly reduces the quality of such a model. The crucial importance of the topographic masses density model for both determined values (CBA and (N−ζ)) was also indicated. Therefore, for determining these quantities, all available information on topographic mass densities should be used in modelling.


2020 ◽  
Vol 25 (4) ◽  
pp. 408-427
Author(s):  
Zuzanna Dziuban

Transfers of property are an integral part of armed conflicts and instances of mass political violence. Not just the state and the military, but also civilians confiscate, dispossess, loot and redistribute wealth across ethnic, national, class or religious lines, in the process re-enacting and sustaining the boundaries of othering and belonging that stand behind the conflict. In this way, economic violence takes on an essentially political dimension. Although, to date, rarely conceptualized as such, even grave robbery perpetrated at the burial sites of a defeated enemy or a member of othered minority constitutes a practice of alterity and dehumanization. And while, in the aftermath of violence, this very fact has the ability to invest things taken from mass graves with a particularly disturbing potential, this article reflects on the practices and affective dynamics surrounding objects of a distinctively unsettling status: golden teeth and dental bridges in their ambivalent condition between material objects (valuables) and bodily remains of the dead. They are considered in this article through the conceptual lens of ‘atopic objects’, a notion designed to bring to the fore both the out-of-place quality and the at once as-well-as/neither-nor character of those things, suspended on the threshold between human remains and material objects, private possessions and body parts of othered and violently dispossessed people. In this article, the author asks how this uneasy ontological status is experienced, acted upon and negotiated by the new (and rarely rightful) ‘owners’ and offers an insight into the practical, affective, political and also legal framings through which ‘atopic objects’ are being constructed and reconstructed either as things or as body parts and, at the cost of their unsettling quality, become embedded in the postwar orders, both in the intimate order of the body and in the political–economic order of the state.


2020 ◽  
Vol 50 (3) ◽  
pp. 287-302
Author(s):  
Róbert ČUNDERLÍK ◽  
Matej MEDĽA ◽  
Karol MIKULA

The paper presents local quasigeoid modelling in Slovakia using the finite volume method (FVM). FVM is used to solve numerically the fixed gravimetric boundary value problem (FGBVP) on a 3D unstructured mesh created above the real Earth's surface. Terrestrial gravimetric measurements as input data represent the oblique derivative boundary conditions on the Earth's topography. To handle such oblique derivative problem, its tangential components are considered as surface advection terms regularized by a surface diffusion. The FVM numerical solution is fixed to the GOCE-based satellite-only geopotential model on the upper boundary at the altitude of 230 km. The horizontal resolution of the 3D computational domain is 0.002 × 0.002 deg and its discretization in the radial direction is changing with altitude. The created unstructured 3D mesh of finite volumes consists of 454,577,577 unknowns. The FVM numerical solution of FGBVP on such a detailed mesh leads to large-scale parallel computations requiring 245 GB of internal memory. It results in the disturbing potential obtained in the whole 3D computational domain. Its values on the discretized Earth's surface are transformed into the local quasigeoid model that is tested at 404 GNSS/levelling benchmarks. The standard deviation of residuals is 2.8 cm and decreases to 2.6 cm after removing 9 identified outliers. It indicates high accuracy of the obtained FVM-based local quasigeoid model in Slovakia.


2020 ◽  
Vol 229 (8) ◽  
pp. 1545-1555
Author(s):  
Aaron J. Rosengren ◽  
Hossein Namazyfard ◽  
Giorgio E. O. Giacaglia

2020 ◽  
Author(s):  
Róbert Čunderlík ◽  
Marek Macák ◽  
Michal Kollár ◽  
Karol Mikula

<p>Recent high-resolution mean sea surface models obtained from satellite altimetry in a combination with the GRACE/GOCE-based global geopotential models provide valuable information for detailed modelling of the altimetry-derived gravity data. Our approach is based on a numerical solution of the altimetry-gravimetry boundary-value problem using the finite volume method (FVM). FVM discretizes the 3D computational domain between an ellipsoidal approximation of the Earth's surface and an upper boundary chosen at a mean altitude of the GOCE satellite orbits. A parallel implementation of the finite volume numerical scheme and large-scale parallel computations on clusters with distributed memory allow to get a high-resolution numerical solution in the whole 3D computational domain. Our numerical experiment presents the altimetry-derived gravity disturbances and disturbing gradients determined with the high-resolution 1 x 1 arc min at two altitude levels; on the reference ellipsoid and at the altitude of 10 km above the ellipsoid. As input data, the Dirichlet boundary conditions over oceans/seas are considered in the form of the disturbing potential. It is obtained from the geopotential evaluated on the DTU18 mean sea surface model from the GO_CONS_GCF_2_TIM_R5 geopotential model and then filtered using the nonlinear diffusion filtering. On the upper boundary, the FVM solution is fixed to the disturbing potential generated from the GO_CONS_GCF_2_DIR_R5 model while exploiting information from the GRACE and GOCE satellite missions.</p>


Sign in / Sign up

Export Citation Format

Share Document