Japan's Role in the Present and Future Satellite Observation for Global Water Cycle Research

Author(s):  
Riko Oki ◽  
Yoji Furuhama

2020 ◽  
Author(s):  
yijian zeng ◽  

<p>In the past decades, space-based Earth Observations (EO) have been rapidly advancing in monitoring the global water cycle, in particular for the variables related to precipitation, evapotranspiration and soil moisture, often at (tens of) kilometre scales. Whilst these data are highly effective to characterise water cycle variation at regional to global scale, they are less suitable for sustainable management of water resource, which needs more detailed information at local and field scale due to inhomogeneous characteristics of the soil and vegetation. To effectively exploit existing knowledge at different scales we thus need to answer the following questions: How to downscale the global water cycle products to local scale using multiple sources/scales of EO data? How to explore and apply the downscaled information at the management level for understanding soil-water-vegetation-energy processes? And how to use such fine-scale information to improve the management of soil and water resources? An integrative information aqueduct (iAqueduct) is proposed to close the gaps between global satellite observation of water cycle and local needs of information for sustainable management of water resources. iAqueduct aims to accomplish its goals by combining Copernicus satellite data (with intermediate resolutions) with high resolution Unmanned Aerial System (UAS) and in-situ observations to develop scaling functions for soil properties and soil moisture and evapotranspiration at high spatial resolution scales.</p>



1989 ◽  
Vol 289 (4) ◽  
pp. 455-483 ◽  
Author(s):  
Y. Tardy ◽  
R. N'Kounkou ◽  
J.-L. Probst


2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.



Science ◽  
2012 ◽  
Vol 336 (6080) ◽  
pp. 455-458 ◽  
Author(s):  
P. J. Durack ◽  
S. E. Wijffels ◽  
R. J. Matear


1990 ◽  
Vol 66 (3-4) ◽  
pp. 303


2001 ◽  
Vol 32 (1-2) ◽  
pp. 231-246 ◽  
Author(s):  
Siegfried Franck ◽  
Christine Bounama


Author(s):  
William H. Schlesinger


Sign in / Sign up

Export Citation Format

Share Document