A Hyper-Heuristic Approach to Evolving Algorithms for Bandwidth Reduction Based on Genetic Programming

Author(s):  
Behrooz Koohestani ◽  
Riccardo Poli
2013 ◽  
Vol 16 (2) ◽  
pp. 302-318 ◽  
Author(s):  
Kent McClymont ◽  
Edward C. Keedwell ◽  
Dragan Savić ◽  
Mark Randall-Smith

The water distribution network (WDN) design problem is primarily concerned with finding the optimal pipe sizes that provide the best service for minimal cost; a problem of continuing importance both in the UK and internationally. Consequently, many methods for solving this problem have been proposed in the literature, often using tailored, hand-crafted approaches to more effectively optimise this difficult problem. In this paper we investigate a novel hyper-heuristic approach that uses genetic programming (GP) to evolve mutation operators for evolutionary algorithms (EAs) which are specialised for a bi-objective formulation of the WDN design problem (minimising WDN cost and head deficit). Once generated, the evolved operators can then be used ad infinitum in any EA on any WDN to improve performance. A novel multi-objective method is demonstrated that evolves a set of mutation operators for one training WDN. The best operators are evaluated in detail by applying them to three test networks of varying complexity. An experiment is conducted in which 83 operators are evolved. The best 10 are examined in detail. One operator, GP1, is shown to be especially effective and incorporates interesting domain-specific learning (pipe smoothing) while GP5 demonstrates the ability of the method to find known, well-used operators like a Gaussian.


2021 ◽  
Author(s):  
◽  
Rachel Hunt

<p>Scheduling problems arise whenever there is a choice of order in which a number of tasks should be performed; they arise commonly, daily and everywhere. A job shop is a common manufacturing environment in which a schedule for processing a set of jobs through a set of machines needs to be constructed. Job shop scheduling (JSS) has been called a fascinating challenge as it is computationally hard and prevalent in the real-world. Developing more effective ways of scheduling jobs could increase profitability through increasing throughput and decreasing costs. Dispatching rules (DRs) are one of the most popular scheduling heuristics. DRs are easy to implement, have low computational cost, and cope well with the dynamic nature of real-world manufacturing environments. However, the manual development of DRs is time consuming and requires expert knowledge of the scheduling environment. Genetic programming (GP) is an evolutionary computation method which is ideal for automatically discovering DRs. This is a hyper-heuristic approach, as GP is searching the search space of heuristic (DR) solutions rather than constructing a schedule directly.  The overall goal of this thesis is to develop GP based hyper-heuristics for the efficient evolution (automatic generation) of robust, reusable and effective scheduling heuristics for JSS environments, with greater interpretability.  Firstly, this thesis investigates using GP to evolve optimal DRs for the static two-machine JSS problem with makespan objective function. The results show that some evolved DRs were equivalent to an optimal scheduling algorithm. This validates both the GP based hyper-heuristic approach for generating DRs for JSS and the representation used.  Secondly, this thesis investigates developing ``less-myopic'' DRs through the use of wider-looking terminals and local search to provide additional fitness information. The results show that incorporating features of the state of the wider shop improves the mean performance of the best evolved DRs, and that the inclusion of local search in evaluation evolves DRs which make better decisions over the local time horizon, and attain lower total weighted tardiness.   Thirdly, this thesis proposes using strongly typed GP (STGP) to address the challenging issue of interpretability of DRs evolved by GP. Several grammars are investigated and the results show that the DRs evolved in the semantically constrained search space of STGP do not have (on average) performance that is as good as unconstrained. However, the interpretability of evolved rules is substantially improved.  Fourthly, this thesis investigates using multiobjective GP to encourage evolution of DRs which are more readily interpretable by human operators. This approach evolves DRs with similar performance but smaller size. Fragment analysis identifies popular combinations of terminals which are then used as high level terminals; the inclusion of these terminals improved the mean performance of the best evolved DRs.  Through this thesis the following major contributions have been made: (1) the first use of GP to evolve optimal DRs for the static two-machine job shop with makespan objective function; (2) an approach to developing less-myopic DRs through the inclusion of wider looking terminals and the use of local search to provide additional fitness information over an extended decision horizon; (3) the first use of STGP for the automatic discovery of DRs with better interpretability and semantic validity for increased trust; and (4) the first multiobjective GP approach that considers multiple objectives investigating the trade-off between scheduling behaviour and interpretability. This is also the first work that uses analysis of evolved GP individuals to perform feature selection and construction for JSS.</p>


2021 ◽  
Author(s):  
◽  
Rachel Hunt

<p>Scheduling problems arise whenever there is a choice of order in which a number of tasks should be performed; they arise commonly, daily and everywhere. A job shop is a common manufacturing environment in which a schedule for processing a set of jobs through a set of machines needs to be constructed. Job shop scheduling (JSS) has been called a fascinating challenge as it is computationally hard and prevalent in the real-world. Developing more effective ways of scheduling jobs could increase profitability through increasing throughput and decreasing costs. Dispatching rules (DRs) are one of the most popular scheduling heuristics. DRs are easy to implement, have low computational cost, and cope well with the dynamic nature of real-world manufacturing environments. However, the manual development of DRs is time consuming and requires expert knowledge of the scheduling environment. Genetic programming (GP) is an evolutionary computation method which is ideal for automatically discovering DRs. This is a hyper-heuristic approach, as GP is searching the search space of heuristic (DR) solutions rather than constructing a schedule directly.  The overall goal of this thesis is to develop GP based hyper-heuristics for the efficient evolution (automatic generation) of robust, reusable and effective scheduling heuristics for JSS environments, with greater interpretability.  Firstly, this thesis investigates using GP to evolve optimal DRs for the static two-machine JSS problem with makespan objective function. The results show that some evolved DRs were equivalent to an optimal scheduling algorithm. This validates both the GP based hyper-heuristic approach for generating DRs for JSS and the representation used.  Secondly, this thesis investigates developing ``less-myopic'' DRs through the use of wider-looking terminals and local search to provide additional fitness information. The results show that incorporating features of the state of the wider shop improves the mean performance of the best evolved DRs, and that the inclusion of local search in evaluation evolves DRs which make better decisions over the local time horizon, and attain lower total weighted tardiness.   Thirdly, this thesis proposes using strongly typed GP (STGP) to address the challenging issue of interpretability of DRs evolved by GP. Several grammars are investigated and the results show that the DRs evolved in the semantically constrained search space of STGP do not have (on average) performance that is as good as unconstrained. However, the interpretability of evolved rules is substantially improved.  Fourthly, this thesis investigates using multiobjective GP to encourage evolution of DRs which are more readily interpretable by human operators. This approach evolves DRs with similar performance but smaller size. Fragment analysis identifies popular combinations of terminals which are then used as high level terminals; the inclusion of these terminals improved the mean performance of the best evolved DRs.  Through this thesis the following major contributions have been made: (1) the first use of GP to evolve optimal DRs for the static two-machine job shop with makespan objective function; (2) an approach to developing less-myopic DRs through the inclusion of wider looking terminals and the use of local search to provide additional fitness information over an extended decision horizon; (3) the first use of STGP for the automatic discovery of DRs with better interpretability and semantic validity for increased trust; and (4) the first multiobjective GP approach that considers multiple objectives investigating the trade-off between scheduling behaviour and interpretability. This is also the first work that uses analysis of evolved GP individuals to perform feature selection and construction for JSS.</p>


Sign in / Sign up

Export Citation Format

Share Document