Energy Efficient Cloud Data Center Management Based on Fuzzy Multi Criteria Decision Making

Author(s):  
Shahzad Alip ◽  
Siyuan Jing ◽  
Kun She
Author(s):  
Abdullah Fadil ◽  
Waskitho Wibisono

Komputasi awan atau cloud computing merupakan lingkungan yang heterogen dan terdistribusi, tersusun atas gugusan jaringan server dengan berbagai kapasitas sumber daya komputasi yang berbeda-beda guna menopang model layanan yang ada di atasnya. Virtual machine (VM) dijadikan sebagai representasi dari ketersediaan sumber daya komputasi dinamis yang dapat dialokasikan dan direalokasikan sesuai dengan permintaan. Mekanisme live migration VM di antara server fisik yang terdapat di dalam data center cloud digunakan untuk mencapai konsolidasi dan memaksimalkan utilisasi VM. Pada prosedur konsoidasi vm, pemilihan dan penempatan VM sering kali menggunakan kriteria tunggal dan statis. Dalam penelitian ini diusulkan pemilihan dan penempatan VM menggunakan multi-criteria decision making (MCDM) pada prosedur konsolidasi VM dinamis di lingkungan cloud data center guna meningkatkan layanan cloud computing. Pendekatan praktis digunakan dalam mengembangkan lingkungan cloud computing berbasis OpenStack Cloud dengan mengintegrasikan VM selection dan VM Placement pada prosedur konsolidasi VM menggunakan OpenStack-Neat. Hasil penelitian menunjukkan bahwa metode pemilihan dan penempatan VM melalui live migration mampu menggantikan kerugian yang disebabkan oleh down-times sebesar 11,994 detik dari waktu responnya. Peningkatan response times terjadi sebesar 6 ms ketika terjadi proses live migration VM dari host asal ke host tujuan. Response times rata-rata setiap vm yang tersebar pada compute node setelah terjadi proses live migration sebesar 67 ms yang menunjukkan keseimbangan beban pada sistem cloud computing.


2019 ◽  
Vol 22 ◽  
pp. 139-151
Author(s):  
Sudarshan Chakravarthy A ◽  
Sudhakar Ch ◽  
Ramesh T

Author(s):  
Avinab Marahatta ◽  
Sandeep Pirbhulal ◽  
Fa Zhang ◽  
Reza M. Parizi ◽  
Kim-Kwang Raymond Choo ◽  
...  

Author(s):  
Li Mao ◽  
De Yu Qi ◽  
Wei Wei Lin ◽  
Bo Liu ◽  
Ye Da Li

With the rapid growth of energy consumption in global data centers and IT systems, energy optimization has become an important issue to be solved in cloud data center. By introducing heterogeneous energy constraints of heterogeneous physical servers in cloud computing, an energy-efficient resource scheduling model for heterogeneous physical servers based on constraint satisfaction problems is presented. The method of model solving based on resource equivalence optimization is proposed, in which the resources in the same class are pruning treatment when allocating resource so as to reduce the solution space of the resource allocation model and speed up the model solution. Experimental results show that, compared with DynamicPower and MinPM, the proposed algorithm (EqPower) not only improves the performance of resource allocation, but also reduces energy consumption of cloud data center.


Sign in / Sign up

Export Citation Format

Share Document