Parallel Optimization for Sparse Matrix–Vector on GPU

Author(s):  
Meng Jia Yin ◽  
Xian Bin Xu ◽  
Hua Chen ◽  
Shui Bing He ◽  
Jing Hu
2016 ◽  
Vol 26 (04) ◽  
pp. 1640001
Author(s):  
Jiaquan Gao ◽  
Yuanshen Zhou ◽  
Kesong Wu

Accelerating the sparse matrix-vector multiplication (SpMV) on the graphics processing units (GPUs) has attracted considerable attention recently. We observe that on a specific multiple-GPU platform, the SpMV performance can usually be greatly improved when a matrix is partitioned into several blocks according to a predetermined rule and each block is assigned to a GPU with an appropriate storage format. This motivates us to propose a novel multi-GPU parallel SpMV optimization model. Our model involves two stages. In the first stage, a simple rule is defined to divide any given matrix among multiple GPUs, and then a performance model, which is independent of the problems and dependent on the resources of devices, is proposed to accurately predict the execution time of SpMV kernels. Using these models, we construct in the second stage an optimally multi-GPU parallel SpMV algorithm that is automatically and rapidly generated for the platform for any problem. Given that our model for SpMV is general, independent of the problems, and dependent on the resources of devices, this model is constructed only once for each type of GPU. The experiments validate the high efficiency of our proposed model.


Author(s):  
Ernesto Dufrechou ◽  
Pablo Ezzatti ◽  
Enrique S Quintana-Ortí

More than 10 years of research related to the development of efficient GPU routines for the sparse matrix-vector product (SpMV) have led to several realizations, each with its own strengths and weaknesses. In this work, we review some of the most relevant efforts on the subject, evaluate a few prominent routines that are publicly available using more than 3000 matrices from different applications, and apply machine learning techniques to anticipate which SpMV realization will perform best for each sparse matrix on a given parallel platform. Our numerical experiments confirm the methods offer such varied behaviors depending on the matrix structure that the identification of general rules to select the optimal method for a given matrix becomes extremely difficult, though some useful strategies (heuristics) can be defined. Using a machine learning approach, we show that it is possible to obtain unexpensive classifiers that predict the best method for a given sparse matrix with over 80% accuracy, demonstrating that this approach can deliver important reductions in both execution time and energy consumption.


2017 ◽  
Vol 43 (4) ◽  
pp. 1-49 ◽  
Author(s):  
Salvatore Filippone ◽  
Valeria Cardellini ◽  
Davide Barbieri ◽  
Alessandro Fanfarillo

Sign in / Sign up

Export Citation Format

Share Document