Plausible Structures for 2-D Euler Systems

2001 ◽  
pp. 195-210
Author(s):  
Yuxi Zheng
Keyword(s):  
Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1195
Author(s):  
Shu Wang ◽  
Yongxin Wang

This paper investigates the globally dynamical stabilizing effects of the geometry of the domain at which the flow locates and of the geometry structure of the solutions with the finite energy to the three-dimensional (3D) incompressible Navier–Stokes (NS) and Euler systems. The global well-posedness for large amplitude smooth solutions to the Cauchy problem for 3D incompressible NS and Euler equations based on a class of variant spherical coordinates is obtained, where smooth initial data is not axi-symmetric with respect to any coordinate axis in Cartesian coordinate system. Furthermore, we establish the existence, uniqueness and exponentially decay rate in time of the global strong solution to the initial boundary value problem for 3D incompressible NS equations for a class of the smooth large initial data and a class of the special bounded domain described by variant spherical coordinates.


2004 ◽  
Vol 140 (02) ◽  
pp. 317-332 ◽  
Author(s):  
Tom Weston
Keyword(s):  

2017 ◽  
Vol 64 (2) ◽  
pp. 335-360 ◽  
Author(s):  
Emmanuel Franck ◽  
Laurent Gosse

2009 ◽  
Vol 195 ◽  
pp. 97-111
Author(s):  
Soogil Seo

AbstractLet K be an imaginary quadratic field and let F be an abelian extension of K. It is known that the order of the class group ClF of F is equal to the order of the quotient UF/ElF of the group of global units UF by the group of elliptic units ElF of F. We introduce a filtration on UF/ElF made from the so-called truncated Euler systems and conjecture that the associated graded module is isomorphic, as a Galois module, to the class group. We provide evidence for the conjecture using Iwasawa theory.


2017 ◽  
Vol 13 (05) ◽  
pp. 1165-1190 ◽  
Author(s):  
Jilali Assim ◽  
Youness Mazigh ◽  
Hassan Oukhaba

Let [Formula: see text] be a number field and let [Formula: see text] be an odd rational prime. Let [Formula: see text] be a [Formula: see text]-extension of [Formula: see text] and let [Formula: see text] be a finite extension of [Formula: see text], abelian over [Formula: see text]. In this paper we extend the classical results, e.g. [16], relating characteristic ideal of the [Formula: see text]-quotient of the projective limit of the ideal class groups to the [Formula: see text]-quotient of the projective limit of units modulo Stark units, in the non-semi-simple case, for some [Formula: see text]-irreductible characters [Formula: see text] of [Formula: see text]. The proof essentially uses the theory of Euler systems.


Author(s):  
V. A. Kolyvagin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document