A Limit Theorem for Weighted Branching Process Trees

1994 ◽  
pp. 153-166 ◽  
Author(s):  
Harry Kesten
1974 ◽  
Vol 11 (3) ◽  
pp. 458-470 ◽  
Author(s):  
Howard J. Weiner

In a multitype critical age dependent branching process with immigration, the numbers of cell types born by t, divided by t2, tends in law to a one-dimensional (degenerate) law whose Laplace transform is explicitily given. The method of proof makes a correspondence between the moments in the m-dimensional case and the one-dimensional case, for which the corresponding limit theorem is known. Other applications are given, a possible relaxation of moment assumptions, and extensions are indicated.


1998 ◽  
Vol 35 (02) ◽  
pp. 281-292
Author(s):  
Ibrahim Rahimov

The multitype discrete time indecomposable branching process with immigration is considered. Using a martingale approach a limit theorem is proved for such processes when the totality of immigrating individuals at a given time depends on evolution of the processes generating by previously immigrated individuals. Corollaries of the limit theorem are obtained for the cases of finite and infinite second moments of offspring distribution in critical processes.


2007 ◽  
Vol 44 (03) ◽  
pp. 753-769 ◽  
Author(s):  
S. V. Nagaev ◽  
V. Wachtel

In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.


1975 ◽  
Vol 7 (03) ◽  
pp. 495-510
Author(s):  
Carla Lipow

A continuous-time Markov branching process is modified to allow some dependence of offspring generating function on population size. The model involves a given population size M, below which the offspring generating function is supercritical and above which it is subcritical. Immigration is allowed when the population size is 0. The process has a stationary measure, and an expression for its generating function is found. A limit theorem for the stationary measure as M tends to ∞ is then obtained.


2009 ◽  
Vol 46 (01) ◽  
pp. 296-307 ◽  
Author(s):  
Dominik Heinzmann

In this paper, a distributional approximation to the time to extinction in a subcritical continuous-time Markov branching process is derived. A limit theorem for this distribution is established and the error in the approximation is quantified. The accuracy of the approximation is illustrated in an epidemiological example. Since Markov branching processes serve as approximations to nonlinear epidemic processes in the initial and final stages, our results can also be used to describe the time to extinction for such processes.


1975 ◽  
Vol 7 (3) ◽  
pp. 495-510 ◽  
Author(s):  
Carla Lipow

A continuous-time Markov branching process is modified to allow some dependence of offspring generating function on population size. The model involves a given population size M, below which the offspring generating function is supercritical and above which it is subcritical. Immigration is allowed when the population size is 0. The process has a stationary measure, and an expression for its generating function is found. A limit theorem for the stationary measure as M tends to ∞ is then obtained.


1978 ◽  
Vol 15 (02) ◽  
pp. 225-234 ◽  
Author(s):  
Harry Cohn ◽  
Anthony G. Pakes

It is known that for a Bienaymé– Galton–Watson process {Zn } whose mean m satisfies 1 < m < ∞, the limiting random variable in the strong limit theorem can be represented as a random sum of i.i.d. random variables and hence that convergence rate results follow from a random sum central limit theorem. This paper develops an analogous theory for the case m = ∞ which replaces ‘sum' by ‘maximum'. In particular we obtain convergence rate results involving a limiting extreme value distribution. An associated estimation problem is considered.


Sign in / Sign up

Export Citation Format

Share Document