Constructing the Supercuspidal Representation of GL n (F), F p—ADIC

Author(s):  
Lawrence Corwin
2002 ◽  
Vol 45 (2) ◽  
pp. 220-230 ◽  
Author(s):  
Jeffrey Hakim ◽  
Fiona Murnaghan

AbstractAn irreducible supercuspidal representation π of G = GL(n, F), where F is a nonarchimedean local field of characteristic zero, is said to be “distinguished” by a subgroup H of G and a quasicharacter χ of H if HomH(π, χ) ≠ 0. There is a suitable global analogue of this notion for an irreducible, automorphic, cuspidal representation associated to GL(n). Under certain general hypotheses, it is shown in this paper that every distinguished, irreducible, supercuspidal representation may be realized as a local component of a distinguished, irreducible automorphic, cuspidal representation. Applications to the theory of distinguished supercuspidal representations are provided.


2010 ◽  
Vol 146 (3) ◽  
pp. 772-794 ◽  
Author(s):  
Freydoon Shahidi ◽  
Steven Spallone

AbstractWe show that the residue at s=0 of the standard intertwining operator attached to a supercuspidal representation π⊗χ of the Levi subgroup GL2(F)×E1 of the quasisplit group SO*6(F) defined by a quadratic extension E/F of p-adic fields is proportional to the pairing of the characters of these representations considered on the graph of the norm map of Kottwitz–Shelstad. Here π is self-dual, and the norm is simply that of Hilbert’s theorem 90. The pairing can be carried over to a pairing between the character on E1 and the character on E× defining the representation of GL2(F) when the central character of the representation is quadratic, but non-trivial, through the character identities of Labesse–Langlands. If the quadratic extension defining the representation on GL2(F) is different from E the residue is then zero. On the other hand when the central character is trivial the residue is never zero. The results agree completely with the theory of twisted endoscopy and L-functions and determines fully the reducibility of corresponding induced representations for all s.


2019 ◽  
Vol 19 (6) ◽  
pp. 2017-2043
Author(s):  
Yoichi Mieda

We determine the parity of the Langlands parameter of a conjugate self-dual supercuspidal representation of $\text{GL}(n)$ over a non-archimedean local field by means of the local Jacquet–Langlands correspondence. It gives a partial generalization of a previous result on the self-dual case by Prasad and Ramakrishnan.


2010 ◽  
Vol 146 (4) ◽  
pp. 1029-1055 ◽  
Author(s):  
Stephen DeBacker ◽  
Mark Reeder

AbstractLet G be a reductive p-adic group. Given a compact-mod-center maximal torus S⊂G and sufficiently regular character χ of S, one can define, following Adler, Yu and others, a supercuspidal representation π(S,χ) of G. For S unramified, we determine when π(S,χ) is generic, and which generic characters it contains.


Author(s):  
Alexander Bertoloni Meli

Abstract We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor's proof of the local Langlands correspondence for $\mathrm {GL_n}$ and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms $\mathrm {Mant}_{b, \mu }$ of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ a supercuspidal representation. In this paper, we give a conjectural formula for $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ an admissible representation and prove it when $\rho $ is essentially square-integrable. Our proof works for general $\rho $ conditionally on a conjecture appearing in Shin's work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.


Author(s):  
Corinne Blondel ◽  
Geo Kam-Fai Tam

Abstract We compute a special case of base change of certain supercuspidal representations from a ramified unitary group to a general linear group, both defined over a p-adic field of odd residual characteristic. In this special case, we require the given supercuspidal representation to contain a skew maximal simple stratum, and the field datum of this stratum to be of maximal degree, tamely ramified over the base field, and quadratic ramified over its subfield fixed by the Galois involution that defines the unitary group. The base change of this supercuspidal representation is described by a canonical lifting of its underlying simple character, together with the base change of the level-zero component of its inducing cuspidal type, modified by a sign attached to a quadratic Gauss sum defined by the internal structure of the simple character. To obtain this result, we study the reducibility points of a parabolic induction and the corresponding module over the affine Hecke algebra, defined by the covering type over the product of types of the given supercuspidal representation and of a candidate of its base change.


2021 ◽  
Vol 25 (36) ◽  
pp. 1021-1048
Author(s):  
Peter Latham ◽  
Monica Nevins

For a tame supercuspidal representation π \pi of a connected reductive p p -adic group G G , we establish two distinct and complementary sufficient conditions, formulated in terms of the geometry of the Bruhat–Tits building of G G , for the irreducible components of its restriction to a maximal compact subgroup to occur in a representation of G G which is not inertially equivalent to π \pi . The consequence is a set of broadly applicable tools for addressing the branching rules of π \pi and the unicity of [ G , π ] G [G,\pi ]_G -types.


2007 ◽  
Vol 50 (3) ◽  
pp. 440-446 ◽  
Author(s):  
A. Raghuram

AbstractLet G1 and G2 be p-adic groups. We describe a decomposition of Ext-groups in the category of smooth representations of G1 × G2 in terms of Ext-groups for G1 and G2. We comment on for a supercuspidal representation π of a p-adic group G. We also consider an example of identifying the class, in a suitable Ext1, of a Jacquet module of certain representations of p-adic GL2n.


Sign in / Sign up

Export Citation Format

Share Document