Notes on Fauna from Several Deep-Sea Hydrothermal Vent and Cold Seep Soft-Sediment Communities

Gorda Ridge ◽  
1990 ◽  
pp. 279-283 ◽  
Author(s):  
Rosemarie F. Petrecca ◽  
J. Frederick Grassle
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


2020 ◽  
Vol 5 (3) ◽  
pp. 153-168
Author(s):  
Zengfeng Du ◽  
Xin Zhang ◽  
Boyang Xue ◽  
Zhendong Luan ◽  
Jun Yan

Paleobiology ◽  
1995 ◽  
Vol 21 (4) ◽  
pp. 461-478 ◽  
Author(s):  
Kathleen A. Campbell ◽  
David J. Bottjer

Brachiopods generally have not been considered to be typical or significant faunal components of modern or ancient hydrothermal vent and cold-seep settings. The Early Cretaceous (Neocomian) rhynchonellide brachiopodPeregrinellahas long been viewed as a paleontological curiosity because of its distinctive morphology, status as the largest Mesozoic brachiopod, anomalous stratigraphic associations, and widespread, yet discontinuous paleogeographic distribution. Examination of all worldwidePeregrinellaoccurrences (14) indicates restriction of this brachiopod to ancient cold-seeps. It is probable thatPeregrinellagrew to large sizes in such great abundances at fossil cold-seep sites because of a richly organic food supply generated by localized fluid seepage and bacterial chemosynthetic activity. Living brachiopods are not known to harbor chemosymbiotic bacteria in their tissues; however, direct chemoautotrophic utilization of reduced fluids byPeregrinellacannot be rejected or demonstrated at present.Peregrinellaoccurs at widely separated cold-seeps of Neocomian age (e.g., California, Mexico, Tibet, Europe), yet its mode of dispersal and larval development is unknown. In modern hydrothermal vents of the deep-sea, organism dispersal occurs along oceanic ridges, where benthic faunas display both planktotrophic and nonplanktotrophic larval-mode types.Peregrinellamay represent a Mesozoic relic of a long-lived “lineage” of vent-seep associated rhynchonellides from the Paleozoic (e.g., ?Eoperegrinella, Dzieduszyckia), but major gaps in the stratigraphic record between these rhynchonellide occurrences, and the lack of rigorous phylogenetic analysis for these groups preclude a clear resolution of the origin(s) of vent-seep brachiopods at present.


2018 ◽  
Vol 66 (1-1) ◽  
pp. 269
Author(s):  
José A. Vargas ◽  
David R. Hilton ◽  
Carlos Ramírez ◽  
Johan Molina

Abstract: Deep sea-research has made significant discoveries thanks to the availability of high resolution bathymetric mapping and vehicles able to reach hydrothermal vents and cold seeps. The Pacific continental margin of Costa Rica includes cold seeps that are inhabited by vesicomyid clams, which are expected to accumulate metals. Data on metals from cold seep clams are scarce. Thus, the objective of this study is to present the concentrations of Al, Cd, Cu, Fe, Pb, Mn, Ni, Sb and Zn in samples from seven clams, a mussel, sediment, and a rock, together with clam morphometric data. The bivalves (Archivesica sp.?) were collected in 2005 at a depth of 1 888 m on the Jaco Scar (09o06’ N - 84o50’ W) during DSRV Alvin dive 4 129. Metals were analyzed by Flame Atomic Absorption Spectrometry (FAAS) and Graphite Furnace (GFAAS). Concentrations are in µg/g dry weight. The order of decreasing maximm concentrations and range in tissues of seven clams, were: Zn (43.4 - 266.3) > Fe (27.2 - 100.0) > Al (5.0 - 69.9) > Cd (0.1 - 12.2) > Sn (2.8 - 9.5) > Cu (4.0 - 7.3) > Mn (1.1 - 2.2) > Pb (0.2 - 0.8) > Ni (0.19 - 0.58 ). The gills had the maximum concentrations of Fe and Al. Maximum concentrations in the only mussel specimen collected, were: Zn (80.4 - gills), Fe (70.6 - gills), Cu (31.0 - gills), Al (26.6 - gills), Sn (4.8 - mantle), Mn (1.7 - mantle), Ni (0.97 - muscle), Pb (0.7 - muscle), Cd (0.57 - gills). The sediment sample had: Al (40 800), Fe (26 500), Mn (72.0), Zn (64.7), Cu (29.4), Ni (19.3), Sn (15.5), Pb (2.98), Cd (0.16). A rock fragment had: Fe (15 650), Al (9 240), Mn (170), Sn (99.5), Zn (36.5), Ni (20.4), Cu (13.4), Pb (1.6), Cd (traces). Clam gills concentrated metals such as Fe and Al. Fe was below the range reported for hydrothermal vent clams, while concentrations of other metals were near the lower range. Fe, Cd, Mn, and Pb in mussel tissues were lower than those in mussels from hydrothermal vent sites, while Cu and Zn were within the range. Metals in the sediment and rock samples appeared very rich in certain metals like Al and Fe and very poor in others, such as Cd. There is a paucity of information on metals and pollutants in clams and other macrofaunal species from Costa Rican cold seeps. Data presented herein must be complemented with future studies conducted jointly on the geochemistry, biology, and management of these deep-sea systems. Rev. Biol. Trop. 66(Suppl. 1): S269-S279. Epub 2018 April 01. 


Author(s):  
Yuan-yuan Sun ◽  
Hai-zhen Zhou ◽  
Qing-lei Sun
Keyword(s):  
Deep Sea ◽  

2021 ◽  
Vol 44 (1) ◽  
pp. 126170
Author(s):  
Sayaka Mino ◽  
Taiki Shiotani ◽  
Satoshi Nakagawa ◽  
Ken Takai ◽  
Tomoo Sawabe
Keyword(s):  
Deep Sea ◽  

Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 9
Author(s):  
Ya-Ping Liu ◽  
Sheng-Tao Fang ◽  
Zhen-Zhen Shi ◽  
Bin-Gui Wang ◽  
Xiao-Nian Li ◽  
...  

Three new phenylhydrazones, penoxahydrazones A–C (compounds 1–3), and two new quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data, and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid, while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of several marine phytoplankton species and marine-derived bacteria.


Sign in / Sign up

Export Citation Format

Share Document