Peregrinella: an Early Cretaceous cold-seep-restricted brachiopod

Paleobiology ◽  
1995 ◽  
Vol 21 (4) ◽  
pp. 461-478 ◽  
Author(s):  
Kathleen A. Campbell ◽  
David J. Bottjer

Brachiopods generally have not been considered to be typical or significant faunal components of modern or ancient hydrothermal vent and cold-seep settings. The Early Cretaceous (Neocomian) rhynchonellide brachiopodPeregrinellahas long been viewed as a paleontological curiosity because of its distinctive morphology, status as the largest Mesozoic brachiopod, anomalous stratigraphic associations, and widespread, yet discontinuous paleogeographic distribution. Examination of all worldwidePeregrinellaoccurrences (14) indicates restriction of this brachiopod to ancient cold-seeps. It is probable thatPeregrinellagrew to large sizes in such great abundances at fossil cold-seep sites because of a richly organic food supply generated by localized fluid seepage and bacterial chemosynthetic activity. Living brachiopods are not known to harbor chemosymbiotic bacteria in their tissues; however, direct chemoautotrophic utilization of reduced fluids byPeregrinellacannot be rejected or demonstrated at present.Peregrinellaoccurs at widely separated cold-seeps of Neocomian age (e.g., California, Mexico, Tibet, Europe), yet its mode of dispersal and larval development is unknown. In modern hydrothermal vents of the deep-sea, organism dispersal occurs along oceanic ridges, where benthic faunas display both planktotrophic and nonplanktotrophic larval-mode types.Peregrinellamay represent a Mesozoic relic of a long-lived “lineage” of vent-seep associated rhynchonellides from the Paleozoic (e.g., ?Eoperegrinella, Dzieduszyckia), but major gaps in the stratigraphic record between these rhynchonellide occurrences, and the lack of rigorous phylogenetic analysis for these groups preclude a clear resolution of the origin(s) of vent-seep brachiopods at present.

Author(s):  
Sabine Stöhr ◽  
Michel Segonzac

The animal communities associated with the deep-sea reducing environment have been studied for almost 30 years, but until now only a single species of ophiuroid, Ophioctenella acies, has been found at both hydrothermal vents and methane cold seeps. Since the faunal overlap between vent and seep communities is small and many endemic species have been found among other taxa (e.g. Mollusca, Crustacea), additional species of ophiuroids were expected at previously unstudied sites. Chemical compositions at reducing sites differ greatly from the nearby bathyal environment. Generally, species adapted to chemosynthetic environments are not found in non-chemosynthetic habitats, but occasional visitors of other bathyal species to vent and seep sites have been recorded among many taxa except ophiuroids. This paper presents an analysis of the ophiuroid fauna found at hydrothermal vents and non-reducing nearby sites on the Mid-Atlantic Ridge and on methane cold seeps in the Gulf of Mexico, at Blake Ridge off South Carolina and south of Barbados. In addition to O. acies, four species were found at vents, Ophiactis tyleri sp. nov., Ophiocten centobi, Ophiomitra spinea and Ophiotreta valenciennesi rufescens. While Ophioctenella acies appears to be restricted to chemosynthetic areas, the other four species were also found in other bathyal habitats. They also occur in low numbers (mostly single individuals), whereas species adapted to hydrothermal areas typically occur in large numbers. Ophioscolex tripapillatus sp. nov. and Ophiophyllum atlanticum sp. nov. are described from nearby non-chemosynthetic sites. In a cold seep south of Barbados, three species of ophiuroids were found, including Ophioctenella acies, Amphiura sp., Ophiacantha longispina sp. nov. and Ophioplinthaca chelys. From the cold seeps at Blake Ridge and the Gulf of Mexico, Ophienigma spinilimbatum gen. et sp. nov. is described, likely restricted to the reducing environment. Ophiotreta valenciennesi rufescens occurred abundantly among Lophelia corals in the Gulf of Mexico seeps, which is the first record of this species from the West Atlantic. Habitat descriptions complement the taxonomic considerations, and the distribution of the animals in reducing environments is discussed.


2022 ◽  
Author(s):  
Kai Zhang ◽  
Yao Xiao ◽  
Jin Sun ◽  
Ting Xu ◽  
Kun Zhou ◽  
...  

Abstract Background Symbiosis with chemosynthetic bacteria has allowed many invertebrates to flourish in ‘extreme’ deep-sea chemosynthesis-based ecosystems, such as hydrothermal vents and cold seeps. Bathymodioline mussels are considered as models of deep-sea animal-bacteria symbiosis, but the diversity of molecular mechanisms governing host-symbiont interactions remains understudied owing to the lack of hologenomes. In this study, we adopted a total hologenome approach in sequencing the hydrothermal vent mussel Bathymodiolus marisindicus and the endosymbiont genomes combined with a transcriptomic and proteomic approach that explore the mechanisms of symbiosis. Results Here, we provide the first coupled mussel-endosymbiont genome assembly. Comparative genome analysis revealed that both Bathymodiolus marisindicus and its endosymbiont reshape their genomes through the expansion of gene families, likely due to chemosymbiotic adaptation. Functional differentiation of host immune-related genes and attributes of symbiont self-protection that likely facilitate the establishment of endosymbiosis. Hologenomic analyses offer new evidence that metabolic complementarity between the host and endosymbionts enables the host to compensate for its inability to synthesize some essential nutrients, and two pathways (digestion of symbionts and molecular leakage of symbionts) that can supply the host with symbiontderived nutrients. Results also showed that bacteriocin and abundant toxins of symbiont may contribute to the defense of the B. marisindicus holobiont. Moreover, an exceptionally large number of anti-virus systems were identified in the B. marisindicus symbiont, which likely work synergistically to efficiently protect their hosts from phage infection, indicating virus-bacteria interactions in intracellular environments of a deepsea vent mussel. Conclusions Our study provides novel insights into the mechanisms of symbiosis enabling deep-sea mussels to successfully colonize the special hydrothermal vent habitats.


2012 ◽  
Vol 9 (12) ◽  
pp. 17037-17052 ◽  
Author(s):  
C. Smith

Abstract. Chemosynthetic communities in the deep-sea can be found at hydrothermal vents, cold seeps, whale falls and wood falls. While these communities have been suggested to exist in isolation from solar energy, much of the life associated with them relies either directly or indirectly on photosynthesis in the surface waters of the oceans. The sun indirectly provides oxygen, a byproduct of photosynthesis, which aerobic chemosynthetic microorganisms require to synthesize organic carbon from CO2. Planktonic life stages of many vent and cold seep invertebrates also directly feed on photosynthetically produced organic matter as they disperse to new vent and seep systems. While a large portion of the life at deep-sea chemosynthetic habitats can be linked to the sun and so could not survive without it, a small portion of anaerobically chemosynthetic microorganisms can persist in its absence. These small and exotic organisms have developed a way of life in the deep-sea which involves the use of resources originating in their entirety from terrestrial sources.


2021 ◽  
Author(s):  
Long Zhang ◽  
Jian He ◽  
Peipei Tan ◽  
Zhen Gong ◽  
Shiyu Qian ◽  
...  

Cold seeps and hydrothermal vents are deep-sea reducing environments that are characterized by a lack of oxygen, photosynthesis-derived nutrients and a high concentration of reducing chemicals. Apodida is an order of deep-sea echinoderms lacking tube feet and complex respiratory trees, which are commonly found in holothurians. Chiridota heheva Pawson & Vance, 2004 (Apodida: Chiridotidae) is one of the few echinoderms that resides in deep-sea reducing environments. Unlike most cold seep and hydrothermal vent-dwelling animals, C. heheva does not survive by maintaining an epi- or endosymbiotic relationship with chemosynthetic microorganisms. The species acquires nutrients by extracting organic components from sediment detritus and suspended material. Here, we report a high-quality genome of C. heheva as a genomic reference for echinoderm adaptation to reducing environments. Chiridota heheva likely colonized its current habitats in the early Miocene. The expansion of the aerolysin-like protein family in C. heheva compared with other echinoderms might be involved in the disintegration of microbes during digestion, which in turn facilitates the species' adaptation to cold seep environments. Moreover, several hypoxia-related genes were subject to positive selection in the genome of C. heheva, which contributes to their adaptation to hypoxic environments.


2018 ◽  
Vol 66 (1-1) ◽  
pp. 269
Author(s):  
José A. Vargas ◽  
David R. Hilton ◽  
Carlos Ramírez ◽  
Johan Molina

Abstract: Deep sea-research has made significant discoveries thanks to the availability of high resolution bathymetric mapping and vehicles able to reach hydrothermal vents and cold seeps. The Pacific continental margin of Costa Rica includes cold seeps that are inhabited by vesicomyid clams, which are expected to accumulate metals. Data on metals from cold seep clams are scarce. Thus, the objective of this study is to present the concentrations of Al, Cd, Cu, Fe, Pb, Mn, Ni, Sb and Zn in samples from seven clams, a mussel, sediment, and a rock, together with clam morphometric data. The bivalves (Archivesica sp.?) were collected in 2005 at a depth of 1 888 m on the Jaco Scar (09o06’ N - 84o50’ W) during DSRV Alvin dive 4 129. Metals were analyzed by Flame Atomic Absorption Spectrometry (FAAS) and Graphite Furnace (GFAAS). Concentrations are in µg/g dry weight. The order of decreasing maximm concentrations and range in tissues of seven clams, were: Zn (43.4 - 266.3) > Fe (27.2 - 100.0) > Al (5.0 - 69.9) > Cd (0.1 - 12.2) > Sn (2.8 - 9.5) > Cu (4.0 - 7.3) > Mn (1.1 - 2.2) > Pb (0.2 - 0.8) > Ni (0.19 - 0.58 ). The gills had the maximum concentrations of Fe and Al. Maximum concentrations in the only mussel specimen collected, were: Zn (80.4 - gills), Fe (70.6 - gills), Cu (31.0 - gills), Al (26.6 - gills), Sn (4.8 - mantle), Mn (1.7 - mantle), Ni (0.97 - muscle), Pb (0.7 - muscle), Cd (0.57 - gills). The sediment sample had: Al (40 800), Fe (26 500), Mn (72.0), Zn (64.7), Cu (29.4), Ni (19.3), Sn (15.5), Pb (2.98), Cd (0.16). A rock fragment had: Fe (15 650), Al (9 240), Mn (170), Sn (99.5), Zn (36.5), Ni (20.4), Cu (13.4), Pb (1.6), Cd (traces). Clam gills concentrated metals such as Fe and Al. Fe was below the range reported for hydrothermal vent clams, while concentrations of other metals were near the lower range. Fe, Cd, Mn, and Pb in mussel tissues were lower than those in mussels from hydrothermal vent sites, while Cu and Zn were within the range. Metals in the sediment and rock samples appeared very rich in certain metals like Al and Fe and very poor in others, such as Cd. There is a paucity of information on metals and pollutants in clams and other macrofaunal species from Costa Rican cold seeps. Data presented herein must be complemented with future studies conducted jointly on the geochemistry, biology, and management of these deep-sea systems. Rev. Biol. Trop. 66(Suppl. 1): S269-S279. Epub 2018 April 01. 


2005 ◽  
Vol 2 (2) ◽  
pp. 257-260 ◽  
Author(s):  
Gaku Tokuda ◽  
Akinori Yamada ◽  
Kazuma Nakano ◽  
Nao Arita ◽  
Hideo Yamasaki

Deep-sea hydrothermal vents and methane seeps are extreme environments that have a high concentration of hydrogen sulphide. However, abundant unique invertebrates including shrimps of the family Bresiliidae have been found in such environments. The bresiliid shrimps are believed to have radiated in the Miocene (less than 20 Myr); however, the period when and the mechanisms by which they dispersed across the hydrothermal vents and cold seeps in oceans worldwide have not been clarified. In the present study, we collected the deep-sea blind shrimp Alvinocaris longirostris from the hydrothermal vent site in the Okinawa Trough and carried out the first investigation of the 18S rRNA gene of a bresiliid shrimp. The phylogenetic analysis revealed that the bresiliid shrimp is situated at an intermediate lineage within the infraorder Caridea and shows monophyly with palaemonid shrimps, which live in shallow sea and freshwater. Furthermore, the mitochondrial cytochrome oxidase I ( COI ) gene sequences were analysed to determine the phylogenetic relationship with known bresiliid shrimps. A. longirostris of the Okinawa Trough had two haplotypes of the COI gene, one of which was identical to the Alvinocaris sp. of the cold seeps in Sagami Bay. These results indicate that a long-distance dispersal of A. longirostris occurred possibly within the last 100 000 years.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5090
Author(s):  
Qingsheng Liu ◽  
Jinjia Guo ◽  
Wangquan Ye ◽  
Kai Cheng ◽  
Fujun Qi ◽  
...  

As a powerful in situ detection technique, Raman spectroscopy is becoming a popular underwater investigation method, especially in deep-sea research. In this paper, an easy-to-operate underwater Raman system with a compact design and competitive sensitivity is introduced. All the components, including the optical module and the electronic module, were packaged in an L362 × Φ172 mm titanium capsule with a weight of 20 kg in the air (about 12 kg in water). By optimising the laser coupling mode and focusing lens parameters, a competitive sensitivity was achieved with the detection limit of SO42− being 0.7 mmol/L. The first sea trial was carried out with the aid of a 3000 m grade remotely operated vehicle (ROV) “FCV3000” in October 2018. Over 20,000 spectra were captured from the targets interested, including methane hydrate, clamshell in the area of cold seep, and bacterial mats around a hydrothermal vent, with a maximum depth of 1038 m. A Raman peak at 2592 cm−1 was found in the methane hydrate spectra, which revealed the presence of hydrogen sulfide in the seeping gas. In addition, we also found sulfur in the bacterial mats, confirming the involvement of micro-organisms in the sulfur cycle in the hydrothermal field. It is expected that the system can be developed as a universal deep-sea survey and detection equipment in the near future.


2001 ◽  
Vol 67 (10) ◽  
pp. 4566-4572 ◽  
Author(s):  
Barbara J. Campbell ◽  
Christian Jeanthon ◽  
Joel E. Kostka ◽  
George W. Luther ◽  
S. Craig Cary

ABSTRACT Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria(epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilonProteobacteria that are directly associated withAlvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45°C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilonProteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilonProteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.


Sign in / Sign up

Export Citation Format

Share Document