Über fortsetzbare Anfangsbedingungen bei hyperbolischen Differentialgleichungen in drei Veränderlichen (With H. Lewy), Ges. Wiss. Göttingen, Math.-Phys. Klasse, (1932), 135–143. Symmetric hyperbolic differential equations, Comm. Pure Appl. Math., VII (1954), 345–392

1986 ◽  
pp. 225-227
Author(s):  
Cathleen S. Morawetz
1958 ◽  
Vol 10 ◽  
pp. 127-160 ◽  
Author(s):  
G. F. D. Duff

A mixed problem in the theory of partial differential equations is an auxiliary data problem wherein conditions are assigned on two distinct surfaces having an intersection of lower dimension. Such problems have usually been formulated in connection with hyperbolic differential equations, with initial and boundary conditions prescribed. In this paper a study is made of the conditions appropriate to a system of R linear partial differential equations of first order, in R dependent and N independent variables.


2018 ◽  
Vol 10 (2) ◽  
pp. 287-297 ◽  
Author(s):  
Feng Qi ◽  
Ai-Qi Liu

Abstract In the paper, the authors provide five alternative proofs of two formulas for a tridiagonal determinant, supply a detailed proof of the inverse of the corresponding tridiagonal matrix, and provide a proof for a formula of another tridiagonal determinant. This is a companion of the paper [F. Qi, V. Čerňanová,and Y. S. Semenov, Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), in press.


Sign in / Sign up

Export Citation Format

Share Document