A Note on My Paper on Symmetric Matrices whose Eigenvalues Satisfy Linear Inequalities

1985 ◽  
pp. 567-567
Author(s):  
Fritz John
1996 ◽  
Vol 11 (31) ◽  
pp. 2531-2537 ◽  
Author(s):  
TATSUO KOBAYASHI ◽  
ZHI-ZHONG XING
Keyword(s):  

We study the Kielanowski parametrization of the Kobayashi-Maskawa (KM) matrix V. A new two-angle parametrization is investigated explicitly and compared with the Kielanowski ansatz. Both of them are symmetric matrices and lead to |V13/V23|=0.129. Necessary corrections to the off-diagonal symmetry of V are also discussed.


2021 ◽  
Vol 618 ◽  
pp. 76-96
Author(s):  
M.A. Duffner ◽  
A.E. Guterman ◽  
I.A. Spiridonov
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 257-262
Author(s):  
Kenji Toyonaga

Abstract Given a combinatorially symmetric matrix A whose graph is a tree T and its eigenvalues, edges in T can be classified in four categories, based upon the change in geometric multiplicity of a particular eigenvalue, when the edge is removed. We investigate a necessary and sufficient condition for each classification of edges. We have similar results as the case for real symmetric matrices whose graph is a tree. We show that a g-2-Parter edge, a g-Parter edge and a g-downer edge are located separately from each other in a tree, and there is a g-neutral edge between them. Furthermore, we show that the distance between a g-downer edge and a g-2-Parter edge or a g-Parter edge is at least 2 in a tree. Lastly we give a combinatorially symmetric matrix whose graph contains all types of edges.


2020 ◽  
Vol 52 (4) ◽  
pp. 1249-1283
Author(s):  
Masatoshi Kimura ◽  
Tetsuya Takine

AbstractThis paper considers ergodic, continuous-time Markov chains $\{X(t)\}_{t \in (\!-\infty,\infty)}$ on $\mathbb{Z}^+=\{0,1,\ldots\}$ . For an arbitrarily fixed $N \in \mathbb{Z}^+$ , we study the conditional stationary distribution $\boldsymbol{\pi}(N)$ given the Markov chain being in $\{0,1,\ldots,N\}$ . We first characterize $\boldsymbol{\pi}(N)$ via systems of linear inequalities and identify simplices that contain $\boldsymbol{\pi}(N)$ , by examining the $(N+1) \times (N+1)$ northwest corner block of the infinitesimal generator $\textbf{\textit{Q}}$ and the subset of the first $N+1$ states whose members are directly reachable from at least one state in $\{N+1,N+2,\ldots\}$ . These results are closely related to the augmented truncation approximation (ATA), and we provide some practical implications for the ATA. Next we consider an extension of the above results, using the $(K+1) \times (K+1)$ ( $K > N$ ) northwest corner block of $\textbf{\textit{Q}}$ and the subset of the first $K+1$ states whose members are directly reachable from at least one state in $\{K+1,K+2,\ldots\}$ . Furthermore, we introduce new state transition structures called (K, N)-skip-free sets, using which we obtain the minimum convex polytope that contains $\boldsymbol{\pi}(N)$ .


Sign in / Sign up

Export Citation Format

Share Document