geometric multiplicity
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 3 (3) ◽  
pp. 517-533
Author(s):  
Miloslav Znojil

It is well known that, using the conventional non-Hermitian but PT−symmetric Bose–Hubbard Hamiltonian with real spectrum, one can realize the Bose–Einstein condensation (BEC) process in an exceptional-point limit of order N. Such an exactly solvable simulation of the BEC-type phase transition is, unfortunately, incomplete because the standard version of the model only offers an extreme form of the limit, characterized by a minimal geometric multiplicity K = 1. In our paper, we describe a rescaled and partitioned direct-sum modification of the linear version of the Bose–Hubbard model, which remains exactly solvable while admitting any value of K≥1. It offers a complete menu of benchmark models numbered by a specific combinatorial scheme. In this manner, an exhaustive classification of the general BEC patterns with any geometric multiplicity is obtained and realized in terms of an exactly solvable generalized Bose–Hubbard model.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1309
Author(s):  
Miloslav Znojil

In an overall framework of quantum mechanics of unitary systems a rather sophisticated new version of perturbation theory is developed and described. The motivation of such an extension of the list of the currently available perturbation-approximation recipes was four-fold: (1) its need results from the quick growth of interest in quantum systems exhibiting parity-time symmetry (PT-symmetry) and its generalizations; (2) in the context of physics, the necessity of a thorough update of perturbation theory became clear immediately after the identification of a class of quantum phase transitions with the non-Hermitian spectral degeneracies at the Kato’s exceptional points (EP); (3) in the dedicated literature, the EPs are only being studied in the special scenarios characterized by the spectral geometric multiplicity L equal to one; (4) apparently, one of the decisive reasons may be seen in the complicated nature of mathematics behind the L≥2 constructions. In our present paper we show how to overcome the latter, purely technical obstacle. The temporarily forgotten class of the L>1 models is shown accessible to a feasible perturbation-approximation analysis. In particular, an emergence of a counterintuitive connection between the value of L, the structure of the matrix elements of perturbations, and the possible loss of the stability and unitarity of the processes of the unfolding of the singularities is given a detailed explanation.


2019 ◽  
Vol 7 (1) ◽  
pp. 257-262
Author(s):  
Kenji Toyonaga

Abstract Given a combinatorially symmetric matrix A whose graph is a tree T and its eigenvalues, edges in T can be classified in four categories, based upon the change in geometric multiplicity of a particular eigenvalue, when the edge is removed. We investigate a necessary and sufficient condition for each classification of edges. We have similar results as the case for real symmetric matrices whose graph is a tree. We show that a g-2-Parter edge, a g-Parter edge and a g-downer edge are located separately from each other in a tree, and there is a g-neutral edge between them. Furthermore, we show that the distance between a g-downer edge and a g-2-Parter edge or a g-Parter edge is at least 2 in a tree. Lastly we give a combinatorially symmetric matrix whose graph contains all types of edges.


2019 ◽  
Vol 7 (1) ◽  
pp. 316-326
Author(s):  
Carlos M. Saiago

Abstract Considered are combinatorially symmetric matrices, whose graph is a given tree, in view of the fact recent analysis shows that the geometric multiplicity theory for the eigenvalues of such matrices closely parallels that for real symmetric (and complex Hermitian) matrices. In contrast to the real symmetric case, it is shown that (a) the smallest example (13 vertices) of a tree and multiplicity list (3, 3, 3, 1, 1, 1, 1) meeting standard necessary conditions that has no real symmetric realizations does have a diagonalizable realization and for arbitrary prescribed (real and multiple) eigenvalues, and (b) that all trees with diameter < 8 are geometrically di-minimal (i.e., have diagonalizable realizations with as few of distinct eigenvalues as the diameter). This re-raises natural questions about multiplicity lists that proved subtly false in the real symmetric case. What is their status in the geometric multiplicity list case?


2018 ◽  
Vol 16 (1) ◽  
pp. 767-791 ◽  
Author(s):  
Ehmet Kasim ◽  
Geni Gupur

AbstractIn this paper, we study the asymptotic property of underlying operator corresponding to the M/G/1 queueing model with single working vacation, where both service times in a regular busy period and in a working vacation period are function. We obtain that all points on the imaginary axis except zero belong to the resolvent set of the operator and zero is an eigenvalue of both the operator and its adjoint operator with geometric multiplicity one. Therefore, we deduce that the time-dependent solution of the queueing model strongly converges to its steady-state solution. We also study the asymptotic behavior of the time-dependent queueing system’s indices for the model.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850100
Author(s):  
Martin A. Carrillo ◽  
Fernando Verduzco ◽  
Francisco A. Carrillo

Given an [Formula: see text]-parameterized family of [Formula: see text]-dimensional vector fields, with an equilibrium point with linearization of eigenvalue zero with algebraic multiplicity [Formula: see text], with [Formula: see text], and geometric multiplicity one, our goal in this paper is to find sufficient conditions for the family of vector fields such that the dynamics on the [Formula: see text]-dimensional [Formula: see text]-parameterized center manifold around the equilibrium point becomes locally topologically equivalent to a given unfolding. Finally, the result is applied to the study of the Rössler system.


Sign in / Sign up

Export Citation Format

Share Document