Correlation Functions for the Two-Dimensional Hubbard Model

Author(s):  
José Carmelo ◽  
Dionys Baeriswyl ◽  
Xenophon Zotos
2005 ◽  
Vol 19 (01n03) ◽  
pp. 213-216
Author(s):  
W. F. LEE ◽  
H. Q. LIN

In this paper, we generalized the perturbation approach to study the quasi-two-dimension extended Hubbard model. This model is characterizing by intra-chain electron hopping t, on-site Column interaction U, nearest-neighbor interaction V, and inter-chain electron hopping t′ and nearest-neighbor interaction V′. An effective Hamiltonian up to sixth-order in t/U, t/V, t/V′, t′/U, t′/V and t′/V′ expansion was obtained and the spin-spin correlation functions were calculated. We presented results for t=t′, V=V′.


2021 ◽  
Author(s):  
Ryui Kaneko ◽  
Ippei Danshita

Abstract Recent developments in analog quantum simulators based on cold atoms and trapped ions call for cross-validating the accuracy of quantum-simulation experiments with use of quantitative numerical methods; however, it is particularly challenging for dynamics of systems with more than one spatial dimension. Here we demonstrate that a tensor-network method running on classical computers is useful for this purpose. We specifically analyze real-time dynamics of the two-dimensional Bose-Hubbard model after a sudden quench starting from the Mott insulator by means of the infinite projected entangled pair state algorithm. Calculated single-particle correlation functions are found to be in good agreement with a recent experiment [Y. Takasu et al., Sci. Adv. 6, eaba9255 (2020)]. By estimating the phase and group velocities from the single-particle and density-density correlation functions, we predict how these velocities vary in the moderate interaction region, which serves as a quantitative benchmark for future experiments.


1991 ◽  
Vol 43 (1) ◽  
pp. 598-606 ◽  
Author(s):  
José Carmelo ◽  
Michael Dzierzawa ◽  
Xenophon Zotos ◽  
Dionys Baeriswyl

2021 ◽  
pp. 127153
Author(s):  
Ke Liu ◽  
Shuhui Yang ◽  
Weiqi Li ◽  
Tao Ying ◽  
Jianqun Yang ◽  
...  

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


2021 ◽  
Vol 103 (15) ◽  
Author(s):  
Martin Ulaga ◽  
Jernej Mravlje ◽  
Jure Kokalj

Sign in / Sign up

Export Citation Format

Share Document