pairing symmetries
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swagatam Nayak ◽  
Navketan Batra ◽  
Sanjeev Kumar

AbstractBy introducing the possibility of equal- and opposite-spin pairings concurrently, we show that the ground state of the extended attractive Hubbard model (EAHM) exhibits rich phase diagrams with a variety of singlet, triplet, and mixed parity superconducting orders. We study the competition between these superconducting pairing symmetries invoking an unrestricted Hartree–Fock–Bogoliubov–de Gennes (HFBdG) mean-field approach, and we use the d-vector formalism to characterize the nature of the stabilized superconducting orders. We discover that, while all other types of orders are suppressed, a non-unitary triplet order dominates the phase space in the presence of an in-plane external magnetic field. We also find a transition between a non-unitary to unitary superconducting phase driven by the change in average electron density. Our results serve as a reference for identifying and understanding the nature of superconductivity based on the symmetries of the pairing correlations. The results further highlight that EAHM is a suitable effective model for describing most of the pairing symmetries discovered in different materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soumya Datta ◽  
Aastha Vasdev ◽  
Ranjani Ramachandran ◽  
Soumyadip Halder ◽  
Kapil Motla ◽  
...  

AbstractSuperconducting crystals with a lack of inversion symmetry can potentially host unconventional pairing. However, till today, no direct conclusive experimental evidence of such unconventional order parameters in non-centrosymmetric superconductors has been reported. In this paper, through direct measurement of the superconducting energy gap by scanning tunnelling spectroscopy, we report the existence of both s-wave (singlet) and p-wave (triplet) pairing symmetries in non-centrosymmetric Ru$$_7$$ 7 B$$_3$$ 3 . Our temperature and magnetic field-dependent studies also indicate that the relative amplitudes of the singlet and triplet components change differently with temperature.


2021 ◽  
Author(s):  
Ma-Hsuan Ma ◽  
Erdembayalag Batsaikhan ◽  
Huang-Nan Chen ◽  
Ting-Yang Chen ◽  
Chi-Hung Lee ◽  
...  

Abstract We report on experimental evidence of non-s-wave pairing in In and Sn nanoparticle assemblies. Spontaneous magnetizations are observed, through extremely weak-field magnetization and neutron-diffraction measurements, to develop when the nanoparticles enter the superconducting state. The superconducting transition temperature TC shifts to a noticeably higher temperature when an external magnetic field or magnetic Ni nanoparticles are introduced into the vicinity of the superconducting In or Sn nanoparticles. There is a critical magnetic field and a critical Ni composition that must be reached before the magnetic environment will suppress the superconductivity. Development of spin-parallel superconducting pairs on the surfaces and spin-antiparallel superconducting pairs in the core of the nanoparticles is used to understand the observations.


2021 ◽  
pp. 127153
Author(s):  
Ke Liu ◽  
Shuhui Yang ◽  
Weiqi Li ◽  
Tao Ying ◽  
Jianqun Yang ◽  
...  

2020 ◽  
Vol 102 (22) ◽  
Author(s):  
Zhan Wang ◽  
Guang-Ming Zhang ◽  
Yi-feng Yang ◽  
Fu-Chun Zhang

Science ◽  
2020 ◽  
Vol 370 (6513) ◽  
pp. 231-236 ◽  
Author(s):  
A. Devarakonda ◽  
H. Inoue ◽  
S. Fang ◽  
C. Ozsoy-Keskinbora ◽  
T. Suzuki ◽  
...  

Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2H-niobium disulfide (2H-NbS2) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.


Sign in / Sign up

Export Citation Format

Share Document