Recent Developments on the Application of the Finite Element Method to Metal Forming Problems

Author(s):  
Shiro Kobayashi
Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


The finite element method has become established as a powerful tool for the solution of many problems of continuum mechanics where its physical interpretation, by analogy with discrete problems of structural analysis permits the user to exercise a considerable degree of insight and judgement in its use. Further it is now a recognized mathematical procedure of approximation which embraces many older methodologies (such as the finite difference method) as a subclass. In the field of geological studies its impact is fairly recent and only a limited application has been made to date. The techniques used here have been limited to those established over a decade ago in the parallel fields and recent developments and possibilities barely touched upon. In this paper the author therefore attempts to ( a ) outline some of the general mathematical and practical aspects of the method with illustrations from various fields which are relevant to geological problems, ( b ) survey accomplishments already made in geology and geotechnical fields, and ( c ) suggest some possible new extensions of application.


2015 ◽  
Vol 60 (3) ◽  
pp. 1745-1754 ◽  
Author(s):  
J. Tomczak ◽  
T. Bulzak ◽  
Z. Pater

Abstract The paper presents a new method for manufacturing hollow shafts, where tubes are used as billet. First, the design of a specially designed forging machine for rotary compression is described. The machine is then numerically tested with regard to its strength, and the effect of elastic strains of the roll system on the quality of produced parts is determined. The machine’s strength is calculated by the finite element method using the NX Nastran program. Technological capabilities of the machine are determined, too. Next, the results of the modeling of the rotary compression process for a hollow stepped shafts by the finite element method are given. The process for manufacturing hollow shafts was modeled using the Simufact.Forming simulation program. The FEM results are then verified experimentally in the designed forging machine for rotary compression. The experimental results confirm that axisymmetric hollow shafts can be produced by the rotary compression method. It is also confirmed that numerical methods are suitable for investigating both machine design and metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document