extrusion dies
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 24)

H-INDEX

23
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 384
Author(s):  
António Gaspar-Cunha ◽  
José A. Covas ◽  
Janusz Sikora

Given the global economic and societal importance of the polymer industry, the continuous search for improvements in the various processing techniques is of practical primordial importance. This review evaluates the application of optimization methodologies to the main polymer processing operations. The most important characteristics related to the usage of optimization techniques, such as the nature of the objective function, the type of optimization algorithm, the modelling approach used to evaluate the solutions, and the parameters to optimize, are discussed. The aim is to identify the most important features of an optimization system for polymer processing problems and define the best procedure for each particular practical situation. For this purpose, the state of the art of the optimization methodologies usually employed is first presented, followed by an extensive review of the literature dealing with the major processing techniques, the discussion being completed by considering both the characteristics identified and the available optimization methodologies. This first part of the review focuses on extrusion, namely single and twin-screw extruders, extrusion dies, and calibrators. It is concluded that there is a set of methodologies that can be confidently applied in polymer processing with a very good performance and without the need of demanding computation requirements.


Author(s):  
António Gaspar-Cunha ◽  
Janusz Sikora ◽  
José A. Covas

The application of optimization techniques to improve the performance of polymer processing technologies is of great practical consequence, since it may result in significant savings of materials and energy resources, assist recycling schemes and generate products with better properties. The present review aims at identifying and discussing the most important characteristics of polymer processing optimization problems in terms of the nature of the objective function, optimization algorithm, and process modelling approach that is used to evaluate the solutions and the parameters to optimize. Taking into account the research efforts developed so far, it is shown that several optimization methodologies can be applied to polymer processing with good results, without demanding important computational requirements. Also, within the field of artificial intelligence, several approaches can be reach significant success. The first part of this review demonstrated the advantages of the optimization approach in polymer processing, discussed some concepts on multi-objective optimization and reported the application of optimization methodologies in single and twin screw extruders, extrusion dies and calibrators. This second part focus on injection molding, blow molding and thermoforming technologies.


Author(s):  
António Gaspar-Cunha ◽  
Janusz Sikora ◽  
José A. Covas

Given the global economic and societal importance of the polymer industry, the continuous search for improvements in the various processing techniques is of practical primordial importance. This review evaluates the application of optimization methodologies to the main polymer processing operations. The most important characteristics related with the usage of optimization techniques, such as the nature of the objective function, the type of optimization algorithm, the modelling approach used to evaluate the solutions, and the parameters to optimize, are discussed. The aim is to identify the most important features of an optimization system for polymer processing problems, and define the best procedure for each particular practical situation. For this purpose, a state-of-the-art of the optimization methodologies usually employed is first presented, followed by an extensive review of the literature dealing with the major processing techniques, the discussion being completed by considering both the characteristics identified and the available optimization methodologies. This first part of the review focus on extrusion, namely extruders, extrusion dies and calibrators. It is concluded that there is a set of methodologies that can be confidently applied in polymer processing, with a very good performance and without the need of demanding computation requirements.


2021 ◽  
Vol 58 (3) ◽  
pp. 217-230
Author(s):  
Valeriu V. Jinescu ◽  
Mihail Juganaru ◽  
Cosmin Jinescu ◽  
Nicoleta Sporea

Some inventions along with theoretical and experimental research made it possible to increase the output of a thermally homogeneous melt provided by the screw. However, the quality of the extruded product depends on some specific features of the extrusion die and to a large extent on the rheological behavior (viscous and elastic) of the polymer melt. The mismatch between the design of the screw-cylinder subassembly and the design of the extrusion die results in products with relatively short service life. The present paper has drawn up the working field of the extruder die and adjusted it based on the limitations imposed by the screw-cylinder subassembly, namely: - the maximum output rate that ensures the required thermal homogeneity of the melt; - the maximum output at which the heating system on the barrel (and possibly the screw) ensures the extrusion temperature; - the minimum economic output corresponding to the diameter of the screw. The working field of some extrusion dies for blown films of the following polymers have been plotted: polypropylene, low density polyethylene, high density polyethylene and ethylene vinyl acetate.


2021 ◽  
Author(s):  
Jingyang Xing ◽  
Majed Alsarheed ◽  
Animesh Kundu ◽  
John P. Coulter

Abstract The control of flow balance at the die exit is the key for successful extrusion of polymers. The complex cross-sectional variation in real-world hollow extrusion profiles intrinsically promotes flow imbalance in the die cavity. Special considerations are required for designing extrusion dies for such profiles. The die design for a complex door frame profile was computationally optimized in this study with the aid of a commercially available software package. The velocity distribution at the die exit, post-die extrudate deformation, temperature distribution, and pressure distribution of a traditional die was investigated in detail and found to be inadequate. A modified die incorporated three distinct features, flow restrictors, flow separators and approach angle of the torpedoes, to achieve a balanced and uniform velocity at the die exit. The flow restrictors and flow separators were added in the pre-parallel zone. Flow restrictors were added on top and bottom of the torpedoes to increase the restriction on polymer flow. A unique inclined flow restrictor was introduced to achieve uniform internal melt flow. Flow separators were added at junctions of outer wall and inner vertical walls to separate the polymer flow into different sections and minimize cross flow between these sections. The addition of these features proved to be highly effective for balancing the velocity distribution at the die exit. The combination of 3-D modeling and simulation is an effective cost and time efficient approach for optimizing complex die designs before manufacturing.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1924
Author(s):  
Amin Razeghiyadaki ◽  
Dongming Wei ◽  
Asma Perveen ◽  
Dichuan Zhang

In the polymer sheet processing industry, the primary objective when designing a coat-hanger die is to achieve a uniform velocity distribution at the exit of the extrusion die outlet. This velocity distribution depends on the internal flow channels of the die, rheological parameters and extrusion process conditions. As a result, coat-hanger dies are often designed for each polymer based on its individual rheological data and other conditions. A multi-rheology method based on a flow network model and the Winter–Fritz equation is proposed and implemented for the calculation, design and optimization of flat sheeting polymer extrusion dies. This method provides a fast and accurate algorithm to obtain die design geometries with constant wall-shear rates and optimal outlet velocity distributions. The geometric design when complemented and validated with fluid flow simulations could be applied for multi-rheological fluid models such as the power-law, Carreau–Yasuda and Cross. This method is applied to sheet dies with both circular- and rectangular-shaped manifolds for several rheological fluids. The designed geometrical parameters are obtained, and the associated fluid simulations are performed to demonstrate its favorable applicability without being limited to only the power-law rheology. The two such designed dies exhibit 32.9 and 21.5 percent improvement in flow uniformity compared to the previous methods for dies with circular and rectangular manifolds, respectively.


2021 ◽  
Vol 13 (8) ◽  
pp. 4501
Author(s):  
Nuno Cristelo ◽  
Jhonathan Rivera ◽  
Tiago Miranda ◽  
Ana Fernández-Jiménez

The development of alternative materials for the construction industry, based on different types of waste, is gaining significant importance in recent years. This is mostly due to the need to increase sustainability of this heavily polluting activity, thus mitigating the dependence on, for instance, Portland cement. The present paper is related to the development of an alkaline activated cement (AAC) exclusively fabricated from industrial by-products (both precursor and activator). Coal combustion fly ash, a common residue from thermoelectric powerplants, and glass waste, from the manufacture of ophthalmic lenses, were used as precursors. These precursors were activated with a recycled alkaline solution, resulting from the cleaning of aluminium extrusion dies, instead of the more common commercial reagents usually applied for this type of binder. Several pastes were studied, combining the precursor and alkaline solution in different proportions. When the most-performing cements were defined, they were used to stabilise a cohesive soil. The experimental procedure and subsequent analysis were designed based on a Response Surface Methodology model, considering the Activator/Solids and Soil/Precursor ratios as the most relevant variables of the stabilisation process. It was observed that, depending on the type of alkaline cement used, there was an optimum precursor and activator contents to optimise the mechanical properties of the stabilised soil. The reliability of this prediction was especially dependent on the type of precursors and, also, on their respective dissolution process right before the homogenization with the soil, under the working conditions available.


2021 ◽  
pp. 102301
Author(s):  
Juan Llorca-Schenk ◽  
Irene Sentana-Gadea ◽  
Miguel Sanchez-Lozano

Sign in / Sign up

Export Citation Format

Share Document