Triangular Numbers and the Representation of Integers as Sums of Four Squares

Author(s):  
Emil Grosswald
1995 ◽  
Vol 50 (1-2) ◽  
pp. 73-94 ◽  
Author(s):  
Ken Ono ◽  
Sinai Robins ◽  
Patrick T. Wahl

2008 ◽  
Vol 1 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Atanas Atanasov ◽  
Rebecca Bellovin ◽  
Ivan Loughman-Pawelko ◽  
Laura Peskin ◽  
Eric Potash

Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 474 ◽  
Author(s):  
Lazaros Moysis ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jesus M. Munoz-Pacheco ◽  
Jacques Kengne ◽  
...  

A modification of the classic logistic map is proposed, using fuzzy triangular numbers. The resulting map is analysed through its Lyapunov exponent (LE) and bifurcation diagrams. It shows higher complexity compared to the classic logistic map and showcases phenomena, like antimonotonicity and crisis. The map is then applied to the problem of pseudo random bit generation, using a simple rule to generate the bit sequence. The resulting random bit generator (RBG) successfully passes the National Institute of Standards and Technology (NIST) statistical tests, and it is then successfully applied to the problem of image encryption.


Sign in / Sign up

Export Citation Format

Share Document