Pathways to the Optimal Set in Linear Programming

Author(s):  
Nimrod Megiddo
2016 ◽  
Vol 33 (04) ◽  
pp. 1650031
Author(s):  
S. Razavyan

This paper attempt to generate a representative subset of the Pareto optimal set for multiple objective mixed integer linear programming problem using the weighted L1 norm distance. The procedure presented in this paper is somewhat similar to the one used in the ideal-point methods and its aim is to generate at each iteration the closest-points to the ideal vector corresponding to the decision maker’s initial aspiration level for a new tradeoff parameter. Unlike most of the known algorithms for generating a discrete representation of the Pareto optimal set, the procedure generates at each iteration a nondominated point by solving only one mixed integer linear programming problem. The obtained solution minimizes the weighted L1 norm distance to the ideal vector with respect to the distance between the ideal vector and previously found vectors. More generally, this approach is able to generate all Pareto optimal solutions, where all of the decision variables are restricted to be integer. In order to explain the presented details, several illustrative examples are provided.


1997 ◽  
Vol 48 (7) ◽  
pp. 757-758
Author(s):  
B Kolman ◽  
R E Beck ◽  
M J Panik
Keyword(s):  

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


Sign in / Sign up

Export Citation Format

Share Document